skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The electrochemistry of molten lithium chlorate and its possible use with lithium in a battery

Journal Article · · J. Electrochem. Soc.; (United States)
DOI:https://doi.org/10.1149/1.2119796· OSTI ID:5623682

Lithium chlorate, LiClO/sub 3/, has reported melting points of 127.6/sup 0/ and 129/sup 0/C. The specific conductance of molten lithium chlorate at 130/sup 0/C is relatively high compared to common aqueous electrolytic solutions at room temperature. Therefore, lithium chlorate offers the chance to operate a new lithium battery system at a temperature betwee 130/sup 0/ and 150/sup 0/C. It was found experimentally that lithium chlorate is stable in the potential range between 3.2 and 4.6V relative to an Li reference electrode. An Li-Cl/sub 2/ secondary battery system was observed to have an open-circuit potential of 3.97V, making an Li-Cl/sub 2/ secondary battery in molten lithium chlorate possible, in principle. A lithium-lithium chlorate primary battery system is also possible. Lithium negative electrode performance was found to be hindered by corrosion and possible runaway reactions with LiClO/sub 3/. Dendrite formation on charging was observed. The solubility of Li/sub 2/O and LiCl in LiClO/sub 3/ at 145/sup 0/C is 7.5 X 10/sup -5/ and 1.78 X 10/sup -3/ mol/cm/sup 3/, respectively. The diffusion coefficients are 1.5 X 10/sup -7/ for Li/sub 2/O and 3.4 X 10/sup -7/ cm/sup 2//sec for LiCl. Platinum appeared to be an inert positive electrode for chlorate, chlorine, or oxygen reactions fo runs on the order of several hours. Nickel shows an active-passive behavior which is complex. Nickel appears suitable for use in a primary cell for the cathodic discharge of LiClO/sub 3/, but it does not appear suitable for a Cl/sub 2/ or O/sub 2/ electrode.

Research Organization:
Chemical Engineering Department, University of California, Los Angeles, California
OSTI ID:
5623682
Journal Information:
J. Electrochem. Soc.; (United States), Vol. 130:4
Country of Publication:
United States
Language:
English