Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Investigations into the chemistry, toxicology, metabolism and possible mode of action of O-ethyl S-methyl ethylphosphonothioate

Thesis/Dissertation ·
OSTI ID:5604318

The chemical and metabolic oxidation of O-ethyl S-methyl ethylphosphonthioate (1) as a model compound was studied. This compound has the following toxicological properties: LD{sub 50} (rat) 4.6 mg/kg, LD{sub 50}(HF) 14.0 ug/g; k{sub i}(BAChE) {equals} 303, k{sub i}(HFAChE) {equals} 623. {sup 13} C- and {sup 31}P-NMR were mainly used in this study. The chemical oxidation of 1 with m-CPBA in CDCl{sub 3} resulted in the formation of O-ethyl ethylphosphonic acid (2), O-ethyl ethylphosphinyloxymethylsulfonate (3) and O-ethyl ethylphosphonic acid anhydride (4). However, oxidation reaction of the model compound 1 with MPPA in D{sub 2}O gave 2 and methylsulfonic acid. 1 was incubated in vitro with rat liver microsomal oxidase, and 2 and methylsulfenic acid were observed along with 1. For the in vivo study, a number of houseflies were treated with 14ug/g (LD{sub 50} level) of 1. Analysis of the extracts of metabolic products provided evidence of the formation of 2. The existence of 1 S-oxide was demonstrated by use of a trapping method and the observation of oxidation products. The S-oxide has been proposed as a possible active intermediate responsible for the high toxicity of 1 to animals. However, owing to its instability it is unlikely that the S-oxide intermediate would persist in an aqueous biological environment long enough to attack the target enzyme. 4 was shown to have high toxicity to the rat and housefly and was also a potent anticholinesterase against BAChE and HFAChE . The presence of 4 was observed directly by the monitoring experiments during the chemical oxidation in aqueous conditions. This provided evidence that this metabolite is stable enough to attack the target site in biological systems. The anhydride 4 is proposed as the active metabolite in in vivo systems, responsible for high toxicity of 1.

Research Organization:
California Univ., Riverside, CA (United States)
OSTI ID:
5604318
Country of Publication:
United States
Language:
English