Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Process for producing plasma sprayed carbide-based coatings with minimal decarburization and near theoretical density

Conference ·
OSTI ID:5593427
 [1]; ;  [2]
  1. Fisher-Barton, Inc., Watertown, WI (USA)
  2. Sandia National Labs., Albuquerque, NM (USA)

Plasma spray deposition of carbide/metal hardcoatings is difficult because complex chemical transformations can occur while spraying, especially in the presence of oxygen. A commercial plasma spray torch has been modified to simultaneously inject carbide powder and a metal alloy powder at two different locations in the plasma stream. Composite hardcoatings of tungsten carbide/cobalt with a nickel-base alloy matrix have been produce with this dual-injection spray process and compared to coatings sprayed with a conventional plasma spray process. X-ray diffraction revealed very little change in the carbide phase composition of dual-injection coatings as compared to the original composition of the carbide spray powder. Conversely, the conventionally sprayed coatings showed significant transformation of the WC phase to the less desirable W{sub 2}C phase, and secondary oxy- carbide phases were also clearly evident. Porosity in the dual- injection coatings was consistently less than 2%, as measured by image analysis of polished metallographic samples. Microhardness results for the dual injection coatings also compared very favorably with values for the conventional coatings. Preliminary results from an ongoing abrasive wear study indicate that the dual-injection coatings are more wear resistant than the conventional coatings, but further research is needed. 6 refs., 3 figs., 3 tabs.

Research Organization:
Sandia National Labs., Albuquerque, NM (USA)
Sponsoring Organization:
DOE; USDOE, Washington, DC (USA)
DOE Contract Number:
AC04-76DP00789
OSTI ID:
5593427
Report Number(s):
SAND-90-0845C; CONF-900520--4; ON: DE91012016
Country of Publication:
United States
Language:
English