skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of different hard, metal-like coatings sprayed by plasma and detonation gun processes

Book ·
OSTI ID:377776
; ;  [1]; ;  [2]
  1. Tampere Univ. of Technology (Finland)
  2. Fraunhofer Inst. of Ceramic Technologies and Sintered Materials, Dresden (Germany)

Structure and wear properties of atmospheric plasma sprayed and detonation gun sprayed coatings prepared from an experimental (Ti,Mo)C-28.4%NiCo powder were compared to coatings sprayed from commercially available WC-12%Co and Cr{sub 3}C{sub 2}-25%NiCr powders. All powders had an agglomerated (spray dried) and sintered structure and nearly the same content of the metallic binder of approximately 20 vol.-%. The powders were characterized by SEM (morphology and cross-sections) and X-ray diffraction (phase composition). The coatings were studied by optical microscope, microhardness measurements, X-ray diffraction analysis and by abrasion and erosion wear tests. The X-ray diffraction patterns of the coatings show that the (Ti,Mo)C-28.4%NiCo powder is characterized by high phase stability in both spray processes, whereas the WC-12%Co powder is prone to significant phase transformations during spraying. The results clearly show the high potential of the experimental (Ti,Mo)C-28.4%NiCo coatings in substituting the conventional systems in wear applications. For instance, it was found that plasma spraying of the (Ti,Mo)C-28.4%NiCo powder with an Ar-H{sub 2} plasma gas resulted in coatings with wear resistance comparable to WC-12%Co coatings. However, detonation gun sprayed WC-12%Co coatings showed somewhat better abrasion wear resistance.

OSTI ID:
377776
Report Number(s):
CONF-9509182-; ISBN 0-87170-541-9; TRN: 96:024988
Resource Relation:
Conference: 1995 National thermal spray conference, Houston, TX (United States), 11-15 Sep 1995; Other Information: PBD: 1995; Related Information: Is Part Of Advances in thermal spray science and technology. Proceedings of the 8. national thermal spray conference; Berndt, C.C.; Sampath, S. [eds.]; PB: 795 p.
Country of Publication:
United States
Language:
English