Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Ethanol production via fungal decomposition and fermentation of biomass. Phase II (FY 1981) annual progress report

Technical Report ·
DOI:https://doi.org/10.2172/5565773· OSTI ID:5565773

This program has as its main goal the isolation and development of Fusarium strains that can efficiently and economically decompose plant polysaccharides to pentoses and hexoses and ferment them to ethanol for fuel purposes. During Phase II (FY 1981) of this program, more than 800 new Fusarium isolates were isolated and screened. All showed cellulolytic activity. The Fusarium mutant ANL 3-72181 (derived after uv exposure of ANL 22 isolate) produced 2.45 iu cellulase after 14 days. This cellulase activity was achieved in the presence of 0.7 mg/mL extracellular protein. In separate tests, the use of both proteose peptone and yeast extract with 1% cellulose increased the production of extracellular protein three times over that on cellulose alone. Initial fermentation by Fusarium strains on 1% glucose produced up to 4.2 mg/mL ethanol in 48 hours. All Fusarium isolates and mutants found during this period were screened for xylose fermentation. Ethanol production during early experimentation required from 120 to 144 hours to yield 4.0 to 4.5 mg/mL ethanol from 1% xylose solutions. Through continuous selection of isolates, this time was reduced to 66 hours. By recycling Fusarium cell mass, fermentations of 1% xylose yielded 4.0 to 4.3 mg/mL ethanol in 48 hours. Consecutive fermentations of 2% xylose produced an average of 8.1 mg/mL ethanol in 48 hours. Fermentation of a 4.5% xylose + 2% glucose solution produced 21 mg/mL ethanol and 0.8 mg/mL acetic acid, while fermentation of a 7% xylose + 2% glucose solution yielded 25.5 mg/mL ethanol and 0.85 mg/mL acetic acid; these fermentations were aerated at a rate of 0.03 v/v-min.

Research Organization:
Argonne National Lab., IL (USA)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
5565773
Report Number(s):
ANL/EES-TM-162; ON: DE82009492
Country of Publication:
United States
Language:
English