Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A deuterium and carbon nuclear magnetic resonance spectroscopic investigation of blood flow and carbohydrate metabolism

Thesis/Dissertation ·
OSTI ID:5516513

The purpose of this study is the development and application of nuclear magnetic resonance (NMR) spectroscopic techniques for this study of whole tissue metabolism, tissue perfusion and blood flow. The feasibility of spin imaging deuterium-enriched tissue water is demonstrated in cat brain in vivo and in situ. The potential application of D{sub 2}O administration to deuterium-flow-imaging is considered. NMR investigations of hepatic carbohydrate metabolism were performed in rat liver in vivo and in situ. A coaxial, double-surface-coil, double-resonance probe was developed for carbon detection while decoupling neighboring proton scalar interactions ({sup 13}C-({sup 1}H)) in hepatic tissue within the living animal. Hormonal and substrate regulation of hepatic glucose and glycogen metabolism was investigated by monitoring the metabolic fate of an administered c-dose of (1-{sup 13}C)glucose. Label flux was directed primarily into newly-synthesized {sup 13}C-labeled glycogen. A multiple resonance ({sup 1}H, {sup 13}C, {sup 31}P) liver perfusion probe was designed for complimentary carbohydrate metabolic studies in rat liver in vitro. A description of the {sup 13}C-({sup 1}H)/{sup 31}P NMR perfusion probe is given. The surgical technique used for liver excision and peripheral life-support apparatus required to maintain hepatic function are also detailed.

Research Organization:
Washington Univ., Seattle, WA (USA)
OSTI ID:
5516513
Country of Publication:
United States
Language:
English