skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Adsorption of enteroviruses to soil cores and their subsequent elution by artificial rainwater

Journal Article · · Appl. Environ. Microbiol.; (United States)
OSTI ID:5474209

The adsorption and elution of a variety of human enteroviruses in a highly permeable, sandy soil was studied by using cores (43 by 125 mm) collected from on operating recharge basin on Long Island. Viruses studied included field and reference strains of polioviruses Types 1 and 3 and references strains of coxsackie virus B3 and echovirus Types 1 and 6. Viruses suspended in treated sewage effluent were allowed to percolate through soil cores, and the filtrate was assayed for unadsorbed viruses. To determine the likelihood of desorption and mobilization, soil-bound viruses were subjected to a rinse with either treated sewage effluent or simulated rainwater which reflected the anion, cation, and pH characteristics of a typical northeastern United States rainfall. The results demonstrated that all polioviruses tested, including both reference and field strains, adsorbed extremely well to cores. Adsorption was somewhat reduced when clen, unconditioned soils were used. Soil-bound poliovirus strain LSc was not significantly mobilized by flooding columns with either a sewage effluent or rainwater rinse. One virus was mobilized by both types of rinses. The amount of viruses mobilized by rainwater rinses ranged from 24 to 66%. Variable adsorption-elution results were observed with other enteroviruses. Two guanidine-resistant mutants of poliovirus LSc demonstrated a soil adsorption-elution profile different from that of the parent strain. The data support the conclusion that soil adsorption-elution behavior is strain dependent and the poliovirus, particularly strain LSc, represents an inappropriate model.

Research Organization:
Brookhaven National Lab., Upton, NY
OSTI ID:
5474209
Journal Information:
Appl. Environ. Microbiol.; (United States), Vol. 38:4
Country of Publication:
United States
Language:
English