Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

EXAFS studies of metamict materials

Conference ·
OSTI ID:5453637
An important approach in the evaluation of crystalline wasteforms for nuclear waste storage is to study the long term stabilities of closely related radioactive mineral species which have become metamict (radiation damaged) and have been exposed to weathering processes for geologic periods of time. The metamictization and alteration effects can then be used for comparison with the results of short term laboratory leaching and irradiation experiments which have been designed to simulate long term effects. Phosphates, the Ti-Nb-Ta complex oxide minerals and various selected silicates are natural analogues for phases in proposed radioactive wasteforms. Because of the geochemical similarities with wasteforms, a study of the metamict state and annealing in complex mineral phosphates, silicates and oxides will yield data that is important in evaluating the long term stability of radioactive wasteforms. The investigation reported here is an application of EXAFS and XANES spectroscopy to the study of the structure of the metamict state. The nearest neighbor environment of Ti and Ca in metamict AB/sub 2/O/sub 6/-type complex oxides has been examined using SSRL Beam Line VII-3 in order to evaluate the effect of alpha-recoil damage on these structures. Comparison of the EXAFS/XANES data for metamict samples with data for annealed and crystalline samples suggests minor changes in the first coordination sphere, Ca-O or Ti-O, (a slight decrease in coordination number and bond lengths, and increased distortion of the coordination polyhedron), but major disruption of the second coordination sphere, for the material in the metamict state. These data suggest a mechanism for the transition from the crystalline to the metamict state in which tilting of cation coordiantion polyhedra is a possible effect of damage caused by alpha-recoil events.
Research Organization:
Boeing Co., Seattle, WA (USA); New Mexico Univ., Albuquerque (USA). Dept. of Geology
DOE Contract Number:
FG06-84ER45121
OSTI ID:
5453637
Report Number(s):
CONF-840764-7; ON: DE85014041
Country of Publication:
United States
Language:
English