Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Differential induction of (/sup 14/C)benzo(a)pyrene metabolism in tissues of the rat placenta

Conference · · Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States)
OSTI ID:5447072
The authors have previously reported the differential induction by ..beta..-naphthaflavone (..beta.. NF) of ethoxyresorufin-O-deethylase activity in the labyrinth (LA) tissue of the rat placenta. This study characterized the metabolism of (/sup 14/C)benzo(a)pyrene (BP) in microsomes prepared from the respective LA and basal zone (BZ) portions of the placenta. Pregnant rats (day 14 gestation) received ..beta.. NF (15 mg/kg, i.p.) or 3-methylcholanthrene (3 MC; 30 mg/kg, i.p.). On day 15 placental were dissected and microsomes were incubated with 16 ..mu.. M (/sup 14/C)BP and 10 mM NADPH. BP metabolites were separated by HPLC on a reverse phase column. Only trace BP metabolism occurred in BZ microsomes from control (C), ..beta.. NF- or 3MC- animals, or in LA microsomes from C animals. In contrast, LA microsomes from ..beta.. NF and 3MC rats actively converted BP to quinone (Q), phenolic (OH) and diol (D) products. Product formation in LA microsomes from 5 ..beta.. NF-animals was as follows: 1,6-Q, 0.86 +/- 0.18 pmoles/mg protein/min (X +/- SE); 3,6-Q, 0.80 +/- 0.21; 6,12-Q, 0.56 +/- 0.16; 9-OH, 0.44 +/- 0.13; 3-OH and 7-OH, 0.32 +/- 0.11; 4,5-D, 0.15 +/- 0.05; 7,8-D, 0.15 +/- 0.05; and 9,10-D, 0.04 +/- 0.01. The same pattern of BP metabolism was observed in LA microsomes from 3MC-animals, with quinones being the predominant product. Thus, data confirm that the labyrinth tissue is the major site of xenobiotic induction and metabolism in the rat placenta.
Research Organization:
Univ. of Florida, Gainesville
OSTI ID:
5447072
Report Number(s):
CONF-8604222-
Conference Information:
Journal Name: Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States) Journal Volume: 45:3
Country of Publication:
United States
Language:
English