On representations of U{sub q}osp(1{vert_bar}2) when q is a root of unity
Journal Article
·
· Journal of Mathematical Physics
- Theory Group, Department of Physics, College of Natural Sciences, Gyeongsang National University, Jinju 660-701 (Korea)
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01 (Japan)
The infinite dimensional highest weight representations of U{sub q}osp(1{vert_bar}2) for the deformation parameter q being a root of unity are investigated. As in the cases of q-deformed nongraded Lie algebras, we find that every irreducible representation is isomorphic to the tensor product of a highest weight representation of sl{sub 2}(R) and a finite dimensional one of U{sub q}osp(1{vert_bar}2). The structure is investigated in detail. {copyright} {ital 1997 American Institute of Physics.}
- OSTI ID:
- 544342
- Journal Information:
- Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 6 Vol. 38; ISSN JMAPAQ; ISSN 0022-2488
- Country of Publication:
- United States
- Language:
- English
Similar Records
Representation properties, Racah sum rule, and Biedenharn{endash}Elliott identity for U{sub q}{bold (}osp{bold (}1{vert_bar}2{bold ))}
Relations between the Casimir operators of sl(1{vert_bar}2) and osp(2{vert_bar}2) superalgebras
On periodic representations of quantum groups
Journal Article
·
Wed Dec 31 23:00:00 EST 1997
· Journal of Mathematical Physics
·
OSTI ID:565719
Relations between the Casimir operators of sl(1{vert_bar}2) and osp(2{vert_bar}2) superalgebras
Journal Article
·
Sat Nov 30 23:00:00 EST 1996
· Journal of Mathematical Physics
·
OSTI ID:397469
On periodic representations of quantum groups
Journal Article
·
Mon Jun 01 00:00:00 EDT 1992
· International Journal of Modern Physics B; (United States)
·
OSTI ID:7173032