Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

On representations of U{sub q}osp(1{vert_bar}2) when q is a root of unity

Journal Article · · Journal of Mathematical Physics
DOI:https://doi.org/10.1063/1.532043· OSTI ID:544342
 [1];  [2]
  1. Theory Group, Department of Physics, College of Natural Sciences, Gyeongsang National University, Jinju 660-701 (Korea)
  2. Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01 (Japan)
The infinite dimensional highest weight representations of U{sub q}osp(1{vert_bar}2) for the deformation parameter q being a root of unity are investigated. As in the cases of q-deformed nongraded Lie algebras, we find that every irreducible representation is isomorphic to the tensor product of a highest weight representation of sl{sub 2}(R) and a finite dimensional one of U{sub q}osp(1{vert_bar}2). The structure is investigated in detail. {copyright} {ital 1997 American Institute of Physics.}
OSTI ID:
544342
Journal Information:
Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 6 Vol. 38; ISSN JMAPAQ; ISSN 0022-2488
Country of Publication:
United States
Language:
English

Similar Records

Representation properties, Racah sum rule, and Biedenharn{endash}Elliott identity for U{sub q}{bold (}osp{bold (}1{vert_bar}2{bold ))}
Journal Article · Wed Dec 31 23:00:00 EST 1997 · Journal of Mathematical Physics · OSTI ID:565719

Relations between the Casimir operators of sl(1{vert_bar}2) and osp(2{vert_bar}2) superalgebras
Journal Article · Sat Nov 30 23:00:00 EST 1996 · Journal of Mathematical Physics · OSTI ID:397469

On periodic representations of quantum groups
Journal Article · Mon Jun 01 00:00:00 EDT 1992 · International Journal of Modern Physics B; (United States) · OSTI ID:7173032