Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Dynamic compression of an Fe{endash}Cr{endash}Ni alloy to 80 GPa

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.366233· OSTI ID:543769
 [1];  [2]
  1. Department of Geosciences, Princeton University, Princeton, New Jersey 08544 (United States)
  2. Lindhurst Laboratory of Experimental Geophysics, Seismological Laboratory, California Institute of Technology, Pasadena, California 91125 (United States)

Wave profiles were measured in an Fe{endash}Cr{endash}Ni alloy (stainless steel 304) shock compressed to Hugoniot stresses between 7 and 80 GPa. A single-stage propellant gun was used to generate shock states and time histories were recorded by velocity interferometry. The particle velocity measurements are generally consistent with impedance match calculations to {plus_minus}2{percent}. Unloading wave velocities were obtained from analysis of the release wave profiles. Using Eulerian finite strain theory and under the assumption of fully elastic initial release, the first and second pressure derivatives of the longitudinal modulus are given by: 7.9(0.5) and {minus}0.16(0.06) GPa{sup {minus}1}, where the numbers in parentheses are one standard deviation uncertainties. The first and second pressure derivatives of the adiabatic bulk modulus are: 6.4(1.0) and {minus}0.17(0.08) GPa{sup {minus}1}. The unloading wave velocities are generally consistent with extrapolated trends from low-pressure ultrasonic data as well as with higher stress shock measurements on an alloy of similar composition. From 1 bar to 80 GPa, Poisson{close_quote}s ratio, {nu}, increases with Hugoniot stress, {sigma} (in GPa), according to the relation: {nu}=0.29 + 0.0008{sigma}. The Hugoniot elastic limit of 304 steel was found to be 0.35(0.12) GPa, and the initial yield stress is 0.21(0.07) GPa. The elastic precursor velocity was 5.8(0.1) km/s. Numerical simulations of the wave profiles using a constitutive model that incorporates a Bauschinger effect and stress relaxation reproduced the main features observed in the profiles. Release adiabats were also calculated from the measured wave profiles. The shear stress at unloading was determined to vary with stress according to the relation: {tau}{sub 0}+{tau}{sub c}=0.149+0.018{sigma}, where {sigma} is given in GPa. {copyright} {ital 1997 American Institute of Physics.}

OSTI ID:
543769
Journal Information:
Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 9 Vol. 82; ISSN JAPIAU; ISSN 0021-8979
Country of Publication:
United States
Language:
English

Similar Records

Elastic properties of metals and minerals under shock compression
Thesis/Dissertation · Tue Dec 31 23:00:00 EST 1991 · OSTI ID:6658012

Dynamic material properties of refractory metals: tantalum and tantalum/tungsten alloys
Journal Article · Wed May 01 00:00:00 EDT 1996 · AIP Conference Proceedings · OSTI ID:561705

Cyclic Plasticity under Shock Loading in an HCP Metal
Conference · Fri Jun 08 00:00:00 EDT 2012 · OSTI ID:1043502