Cyclic Plasticity under Shock Loading in an HCP Metal
- Los Alamos National Laboratory
Plate impact experiments with pressures from 2 to 20 GPa, including one shock-partial release-reshock experiment, were performed on vacuum hot-pressed S-200F Beryllium. This hexagonal close-packed (HCP) metal shows significant plasticity effects in such conditions. The experiments were modeled in a Lagrangian hydrocode using an experimentally calibrated Preston-Tonks-Wallace (PTW) constitutive model. By using the shock data to constrain a high rate portion of PTW, the model was able to generally match plasticity effects on the measured wave profile (surface velocity) during the shock loading, but not unloading. A backstress-based cyclic plasticity model to capture the quasi-elastic release (Bauschinger-type effect) was explored in order to match the unloading and reloading portions of the measured wave profiles. A comparison is made with other approaches in the literature to capture the cyclic plasticity in shock conditions.
- Research Organization:
- Los Alamos National Laboratory (LANL)
- Sponsoring Organization:
- DOE/LANL
- DOE Contract Number:
- AC52-06NA25396
- OSTI ID:
- 1043502
- Report Number(s):
- LA-UR-12-22056
- Country of Publication:
- United States
- Language:
- English
Similar Records
Initial beta-tin stress-strain calibration
Strength and damage modeling in FLAG (U) [Slides]