skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Argon metastable densities in radio frequency Ar, Ar/O{sub 2} and Ar/CF{sub 4} electrical discharges

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.366111· OSTI ID:542150
;  [1]
  1. Department of Electrical and Computer Engineering, University of Illinois, 1406 West Green Street, Urbana, Illinois 61801 (United States)

The spatial distributions of excited states in radio frequency electrical gas discharges have been observed to be dynamic functions of gas mixture, pressure, and applied voltage. Recent measurements of two-dimensional profiles of excited states in the Gaseous Electronics Conference reference cell (GECRC) [McMillin and Zachariah, J. Appl. Phys. {bold 77}, 5538 (1995); {bold 79}, 77 (1996)] have shown that the spatial distribution of the Ar(4s) density varies considerably with operating conditions. The peak density of Ar(4s) systematically shifted in position, as well as changed in magnitude, with variations in pressure, applied voltage, and gas mixture. In this article, we present results from a two-dimensional computer simulation of Ar, Ar/O{sub 2}, and Ar/CF{sub 4} discharges sustained in the GECRC with the intent of investigating the experimental trends. The simulations, performed with the Hybrid Plasma Equipment Model, agree well with experiments. They show that the shift in Ar(4s) densities is largely explained by the reduction in the electron mean free path, and local perturbations in the ambipolar electric field resulting from electrode structures. Additions of small amounts of O{sub 2} and CF{sub 4} decrease the Ar(4s) density due to quenching, and change its profile due to a transition to an electronegative plasma. {copyright} {ital 1997 American Institute of Physics.}

OSTI ID:
542150
Journal Information:
Journal of Applied Physics, Vol. 82, Issue 6; Other Information: PBD: Sep 1997
Country of Publication:
United States
Language:
English