skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate

Abstract

Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributing the capsule evenly over the area to be protected. Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean. Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trails of the biobarrier as part ofmore » waste site caps are scheduled to begin during the next 12 months.« less

Authors:
;  [1];  [2]; ;  [3]
  1. (Westinghouse Savannah River Co., Aiken, SC (United States))
  2. (Savannah River Ecology Lab., Aiken, SC (United States))
  3. (Lilly Research Laboratories, Greenfield, IN (United States))
Publication Date:
Research Org.:
Westinghouse Savannah River Co., Aiken, SC (United States)
Sponsoring Org.:
USDOE; USDOE, Washington, DC (United States)
OSTI Identifier:
5380804
Report Number(s):
WSRC-RP-89-16; CONF-890854-16
ON: DE92011178
DOE Contract Number:
AC09-89SR18035; AC09-76SR00001
Resource Type:
Conference
Resource Relation:
Conference: 11. annual DOE low level waste management conference, Pittsburgh, PA (United States), 22-24 Aug 1989
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; PLANTS; ROOTS; UNDERGROUND STORAGE; GROUND COVER; CLIMATES; RADIOACTIVE WASTE DISPOSAL; RADIOACTIVE WASTE MANAGEMENT; SAVANNAH RIVER PLANT; MANAGEMENT; NATIONAL ORGANIZATIONS; STORAGE; US AEC; US DOE; US ERDA; US ORGANIZATIONS; WASTE DISPOSAL; WASTE MANAGEMENT; 052002* - Nuclear Fuels- Waste Disposal & Storage

Citation Formats

Murphy, C.E. Jr., Corey, J.C., Adriano, D.C., Decker, O.D., and Griggs, R.D. Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate. United States: N. p., 1989. Web.
Murphy, C.E. Jr., Corey, J.C., Adriano, D.C., Decker, O.D., & Griggs, R.D. Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate. United States.
Murphy, C.E. Jr., Corey, J.C., Adriano, D.C., Decker, O.D., and Griggs, R.D. 1989. "Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate". United States. doi:. https://www.osti.gov/servlets/purl/5380804.
@article{osti_5380804,
title = {Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate},
author = {Murphy, C.E. Jr. and Corey, J.C. and Adriano, D.C. and Decker, O.D. and Griggs, R.D.},
abstractNote = {Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributing the capsule evenly over the area to be protected. Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean. Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trails of the biobarrier as part of waste site caps are scheduled to begin during the next 12 months.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1989,
month = 1
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributingmore » the capsule evenly over the area to be protected. Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean. Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trails of the biobarrier as part of waste site caps are scheduled to begin during the next 12 months.« less
  • The U.S. Department of Energy Building Technologies Program s goal of developing high-performance, energy-efficient buildings will require more cost-effective, durable, energy-efficient building envelopes. Forty-eight percent of the residential enduse energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase-change material (PCM) enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field testing of prototype envelope components is an important step in estimating their energy benefits. An innovative PCM (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage andmore » energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility in Charleston, SC. The first test wall was divided into four sections separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCMenhanced wallboards: one was a three-layer structure in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheet-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side that served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. This paper presents the measured performance and analysis to evaluate the energy-saving potential of the nano-PCM-enhanced building components.« less
  • Waste management in humid environments poses a continuing challenge because of the potential contamination of groundwater in the long term. Short-term needs for waste disposal, regulatory uncertainty, and unique site and waste characteristics have led to the development of a site-specific waste classification and management system proposed for the Oak Ridge Reservation. The overlying principle of protection of public health and safety is used to define waste classes compatible with generated waste types, disposal sites and technologies, and treatment technologies. 1 fig., 1 tab.
  • Drip tests designed to replicate the synergistic interactions between waste glass, repository groundwater, water vapor, and sensitized 304L stainless steel in the potential Yucca Mountain Repository have been ongoing in our laboratory for over ten years. Results will be presented from three sets of these drip tests: two with actinide-doped glasses, and one with a fully-radioactive glass. Periodic sampling of these tests have revealed trends in actinide release behavior that are consistent with their entrainment in colloidal material when as-cast glass is reacted. Results from vapor hydrated glass show that initially the actinides are completely dissolved in solution, but asmore » the reaction proceeds, the actinides become suspended in solution. Sequential filtering and alpha spectroscopy of colloid-bearing leachate solutions indicate that more than 80 percent of the plutonium and americium are bound to particles that are captured by a 0. 1 gm filter, while less than 10 percent of the neptunium is stopped by a 0. 1 gm filter. Analytical transmission electron microscopy has been used to examine particles from leachate solutions and to identify several actinide-bearing phases which are responsible for the majority of actinide release during glass corrosion.« less
  • Because of the strength of the cold, dry arctic high pressure vortex, and the absence of multiple air-mass sources, climate records from the polar region tend to display a cleaner signal than those from mid-latitude settings. The high arctic presents unique opportunities for the prediction of the natural background pattern of climate change prior to the disturbances generated by manmade atmospheric pollutants. The Varanger Peninsula of northernmost Norway was extensively depressed by an ice dome during the last glacial stage. Deglaciation was accompanied by isostatic recovery at a steady though exponentially decaying rate. Superimposed on the rising land is amore » discontinuous staircase of cobble beach ridges, deposited during the postglacial period by storms at the coast. The ridges are constructed during brief episodes of weather- and tide-related elevation of sea level and wave run-up. Storminess periods can only occur in the absence of sea ice associated with several decades of mild, relatively warm temperatures. A history of local relative sea level is constructed from over 70 radiocarbon dates of various water-level indicators. The sea-level history is used to construct a chronology of beach-ridge building that documents the cyclic, a periodic nature of arctic storminess conditions. The authors date a dynamic signal with multiple climate transitions from warm, stormy conditions to cool, calm conditions occurring roughly every 200 years between 15,000 years ago to 10,000 years ago. Throughout the Holocene the climate is more settled with longer periods separating the major warm to cool transitions.« less