

CONF-890854-16

Prepared by (SRI)

WSRC-RP-89-16

MAR 30 1992

**TESTS OF A SYSTEM TO EXCLUDE ROOTS FROM
BURIED RADIOACTIVE WASTE IN A WARM, HUMID CLIMATE**

by

WSRC-RP-89-16

C. E. Murphy, Jr.*, D. C. Adriano**, J. C. Corey*, O. D. Decker***, and
R. D. Griggs***

DE92 011178

* Westinghouse Savannah River Company, Aiken, SC
** University of Georgia, Savannah River Ecology Laboratory, Aiken, SC
*** Lilly Research Laboratories, Greenfield, IN

An abstract proposed for a presentation at the
Eleventh Annual DOE Low-Level Waste Management Conference
Pittsburgh, PA

August 22-24, 1989

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The information contained in this article was developed during the course of work under Contract No. DE-AC09-76SR00001 (now Contract No. DE-AC09-88SR18035) with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

M8904023

MASTER

SR

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

**TEST OF A SYSTEM TO EXCLUDE ROOTS FROM
BURIED RADIOACTIVE WASTE IN A WARM, HUMID CLIMATE**

by

C. E. Murphy, Jr.*, D. C. Adriano**, J. C. Corey*, O. D. Decker***, and
R. D. Griggs***

* Westinghouse Savannah River Company, Aiken, SC

** University of Georgia, Savannah River Ecology Laboratory, Aiken, SC

*** Lilly Research Laboratories, Greenfield, IN

ABSTRACT

Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributing the capsule evenly over the area to be protected.

Tests have been conducted in a rhizontron, in glass-walled field trenches in established forest vegetation, and in large pots. In all cases the barrier has excluded roots from the zone of soil below and/or immediately surrounding the biobarrier. Measurements of Trifluralin concentration in the vicinity of the biobarrier show concentration greater than $5 \mu\text{g}/\text{cm}^3$. At this concentration the roots of virtually all species of vegetation should stop growing. Concentration of Trifluralin is below detection at distances greater than 10 in. above the biobarrier.

The information contained in this abstract was developed during the course of work under Contract No. DE-AC09-76SR00001 (now Contract No. DE-AC09-88SR18035) with the U. S. Department of Energy.

Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean.

Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trials of the biobarrier as part of waste site caps are scheduled to begin during the next 12 months.

DATE
FILMED
5/20/92

