Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Oxidative carbonylation - A new syngas route to sebacic acid

Conference · · Am. Chem. Soc., Div. Pet. Chem., Prepr.; (United States)
OSTI ID:5333927

Conventional technology for sebacic acid manufacture involves caustic soda decomposition of ricinoleic acid at high temperature. Principal co-products include 2-octanol and glycerine. Castor oil, which is the natural source for ricinoleic acid, is subject to price fluctuation due to cyclic crop production and protectionist policies by foreign governments. Castor oil technology is also at disadvantage because the overall product yield is low (<80%) and co-product 2-octanol must compete with cheap 2-ethylhexanol in plasticizer applications. These and other factors have resulted in a significant decline in the sebacic acid market from about 30 MM lbs. per year in the 70's to less that 5 MM lbs. in the 80's. Thus, there is a clear need for a new process to produce sebacic acid from cheap and readily available petrochemicals. In Japan, the need for new technology was answered by the development of an electrolytic route to sebacic acid. The Kolbe type electrolytic process involves dimerization of adipic acid half methyl ester salt to give dimethyl sebacate. The dimerization proceeds in 92% yield with 90% selectivity based on the adipate half ester. The main drawbacks of this process are the cost of energy utilized by the electrolytic process and the cost of adipic acid. A recent Chem Systems report indicates a small advantage for the Asahi electrolytic process with ample room for new technology development.

Research Organization:
ARCO Chemical Co., 3801 West Chester Pike, Newtown Square, PA
OSTI ID:
5333927
Report Number(s):
CONF-860425-
Journal Information:
Am. Chem. Soc., Div. Pet. Chem., Prepr.; (United States), Journal Name: Am. Chem. Soc., Div. Pet. Chem., Prepr.; (United States) Vol. 31:1; ISSN ACPCA
Country of Publication:
United States
Language:
English