Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Photolysis of copper(II)-amino acid complexes in water

Journal Article · · Environmental Science and Technology; (United States)
DOI:https://doi.org/10.1021/es00019a007· OSTI ID:5328301
;  [1]
  1. Environmental Protection Agency, Athens, GA (United States)
Kinetics of the photolysis of Cu{sup 2+}-amino acid complexes were investigated under sunlight or monochromatic radiation. Under sunlight (latitude 40{degree}N) in the absence of dioxygen, the mean half-lives estimated for the photoreduction of the bis-Cu{sup 2+} complexes (CuL{sub 2}) at pH 8.0 and 25C were 0.55, 1.6, 8.6, 8.8, 45. and 71 days for L = tris(hydroxymethyl)aminomethane (Tris), {beta}-alanine, L-aspartic acid, L-glutamic acid, glycine, and histidine, respectively. Under monochromatic UV irradiation (310 nm) with dioxygen absent, quantum yields for the photoproduction of Cu(I) from CuL{sub 2} were found to be 0.071, 0.098, 0.063, 0.066, 0.025, and 0.0011 for L = Tris, {beta}-alanine, L-aspartic acid, L-glutamic acid, glycine, and L-histidine, respectively. The effects of pH on the quantum yields were determined for Cu{sup 2+}-{beta}-alanine and Cu{sup 2+}-Tris complexes. Decreases in quantum yields observed with increasing acidity were attributed to changes in speciation from predominantly CuL{sub 2} to less photoreactive complexes, mainly CuL and Cu{sup 2+}. In air-saturated solutions, rates and quantum yields for Cu(I) formation were sharply reduced and hydrogen peroxide was formed. Results of the study suggest that photoreactions of Cu{sup 2+} coordination complexes may contribute to its toxicity to aquatic biota.
OSTI ID:
5328301
Journal Information:
Environmental Science and Technology; (United States), Journal Name: Environmental Science and Technology; (United States) Vol. 25:7; ISSN ESTHA; ISSN 0013-936X
Country of Publication:
United States
Language:
English