Influence of microstructure on fracture toughness of austempered ductile iron
- Wayne State Univ., Detroit, MI (United States). Dept. of Chemical Engineering and Materials Science
An investigation was carried out to examine the influence of microstructure on the plane strain fracture toughness of austempered ductile iron. Austempered ductile iron (ADI) alloyed with nickel, copper, and molybdenum was austenitized and subsequently austempered over a range of temperatures to produce different microstructures. The microstructures were characterized through optical microscopy and X-ray diffraction. Plane strain fracture toughness of all these materials was determined and was correlated with the microstructure. The results of the present investigation indicate that the lower bainitic microstructure results in higher fracture toughness than upper bainitic microstructure. Both volume fraction of retained austenite and its carbon content influence the fracture toughness. The retained austenite content of 25 vol pct was found to provide the optimum fracture toughness. It was further concluded that the carbon content of the retained austenite should be as high as possible to improve fracture toughness.
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 522359
- Journal Information:
- Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, Journal Name: Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Journal Issue: 7 Vol. 28; ISSN 1073-5623; ISSN MMTAEB
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effect of austempering time on mechanical properties of a low manganese austempered ductile iron
Some observations on the fracture of austempered ductile iron