skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ethanol inhibits human bone cell proliferation and function in vitro

Abstract

The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

Authors:
;  [1]
  1. (University of Washington, Seattle (USA))
Publication Date:
OSTI Identifier:
5185723
Resource Type:
Journal Article
Resource Relation:
Journal Name: Metabolism, Clinical and Experimental; (United States); Journal Volume: 40:6
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; 59 BASIC BIOLOGICAL SCIENCES; BONE CELLS; CELL PROLIFERATION; ETHANOL; BIOLOGICAL EFFECTS; SKELETAL DISEASES; ETIOLOGY; ALKALINE PHOSPHATASE; DNA REPLICATION; DOSE-RESPONSE RELATIONSHIPS; ENZYME ACTIVITY; MAN; MITOTIC INDEX; PEPTIDE HYDROLASES; PROLINE; PROTEINS; THYMIDINE; TRACER TECHNIQUES; TRITIUM COMPOUNDS; ALCOHOLS; AMINES; AMINO ACIDS; ANIMAL CELLS; ANIMALS; AZINES; AZOLES; CARBOXYLIC ACIDS; CONNECTIVE TISSUE CELLS; DISEASES; ENZYMES; ESTERASES; HETEROCYCLIC ACIDS; HETEROCYCLIC COMPOUNDS; HYDROGEN COMPOUNDS; HYDROLASES; HYDROXY COMPOUNDS; ISOTOPE APPLICATIONS; MAMMALS; NUCLEIC ACID REPLICATION; NUCLEOSIDES; NUCLEOTIDES; ORGANIC ACIDS; ORGANIC COMPOUNDS; ORGANIC NITROGEN COMPOUNDS; PHOSPHATASES; PRIMATES; PYRIMIDINES; PYRROLES; PYRROLIDINES; RIBOSIDES; SOMATIC CELLS; VERTEBRATES; 560300* - Chemicals Metabolism & Toxicology; 550501 - Metabolism- Tracer Techniques

Citation Formats

Friday, K.E., and Howard, G.A. Ethanol inhibits human bone cell proliferation and function in vitro. United States: N. p., 1991. Web. doi:10.1016/0026-0495(91)90044-W.
Friday, K.E., & Howard, G.A. Ethanol inhibits human bone cell proliferation and function in vitro. United States. doi:10.1016/0026-0495(91)90044-W.
Friday, K.E., and Howard, G.A. Sat . "Ethanol inhibits human bone cell proliferation and function in vitro". United States. doi:10.1016/0026-0495(91)90044-W.
@article{osti_5185723,
title = {Ethanol inhibits human bone cell proliferation and function in vitro},
author = {Friday, K.E. and Howard, G.A.},
abstractNote = {The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.},
doi = {10.1016/0026-0495(91)90044-W},
journal = {Metabolism, Clinical and Experimental; (United States)},
number = ,
volume = 40:6,
place = {United States},
year = {Sat Jun 01 00:00:00 EDT 1991},
month = {Sat Jun 01 00:00:00 EDT 1991}
}
  • Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion ofmore » 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.« less
  • Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, andmore » the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions. • Overexpression of FABP3 inhibits cell growth but advanced the MSC survival under hypoxia. • Overexpression of FABP3 down-regulate the cell cycle and stem cell signaling pathways.« less
  • Bone marrow derived hematopoietic stem cells can function as endothelial progenitor cells. They are recruited to malignant tumors and differentiate into endothelial cells. This mechanism of neovascularization termed vasculogenesis is distinct from proliferation of pre-existing vessels. To better understand vasculogenesis we developed a cell culture model with expansion and subsequent endothelial differentiation of human CD133{sup +} progenitor cells in vitro. {alpha}{sub v}{beta}{sub 3}-integrins are expressed by endothelial cells and play a role in the attachment of endothelial cells to the extracellular matrix. We investigated the effect of Cilengitide, a peptide-like, high affinity inhibitor of {alpha}{sub v}{beta}{sub 3}- and {alpha}{sub v}{beta}{submore » 5}-integrins in our in vitro system. We could show expression of {alpha}{sub v}{beta}{sub 3}-integrin on 60 {+-} 9% of non-adherent endothelial progenitors and on 91 {+-} 7% of differentiated endothelial cells. {alpha}{sub v}{beta}{sub 3}-integrin was absent on CD133{sup +} hematopoietic stem cells. Cilengitide inhibited proliferation of CD133{sup +} cells in a dose-dependent manner. The development of adherent endothelial cells from expanded CD133{sup +} cells was reduced even stronger by Cilengitide underlining its effect on integrin mediated cell adhesion. Expression of endothelial antigens CD144 and von Willebrand factor on differentiating endothelial precursors was decreased by Cilengitide. In summary, Cilengitide inhibits proliferation and differentiation of human endothelial precursor cells underlining its anti-angiogenic effects.« less
  • Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase inmore » all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.« less
  • Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesitymore » has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.« less