Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Imaging of tritium implanted into graphite

Journal Article · · J. Vac. Sci. Technol., A; (United States)
DOI:https://doi.org/10.1116/1.575203· OSTI ID:5181303

The extensive use of graphite in plasma-facing surfaces of tokamaks such as the Tokamak Fusion Test Reactor, which has planned tritium discharges, makes two-dimensional tritium detection techniques important in helping to determine torus tritium inventories. We have performed experiments in which highly oriented pyrolytic graphite (HOPG) samples were first tritium implanted with fluences of approx.10/sup 16/ T/cm/sup 2/ at energies approx. <25 eV and then the near-surface implant distributions were detected in two dimensions using tritium imaging. A portion of the sample was masked off during the implant in order to produce a well-defined implant boundary. Heating of the HOPG samples to temperatures as high as 500 /sup 0/C resulted in no discernible motion of tritium along the basal plane, but did show that significant desorption of the implanted tritium occurred. The current results indicate that tritium in quantities of 10/sup 12/ T/cm/sup 2/ in tritiated components could be readily detected by imaging at lower magnifications.

Research Organization:
Physical Research Division, Sandia National Laboratories, Livermore, California 94550
OSTI ID:
5181303
Journal Information:
J. Vac. Sci. Technol., A; (United States), Journal Name: J. Vac. Sci. Technol., A; (United States) Vol. 6:3; ISSN JVTAD
Country of Publication:
United States
Language:
English