Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Fractionated low doses of abdominal irradiation alters jejunal uptake of nutrients

Journal Article · · Int. J. Radiat. Oncol., Biol. Phys.; (United States)

Abdominal radiation is associated with changes in intestinal uptake of nutrients that begins within three days and persist for over 33 weeks. Clinically, fractionated doses of radiation (FDR) are used in an attempt to minimize the complications of this therapy, but the effects of fractionated doses of radiation on intestinal transport have not been defined. An in vitro technique was used to assess the jejunal and ileal uptake of varying concentrations of glucose and leucine, as well as the uptake of single concentrations of fatty acids and decanol in rats exposed 3, 7, and 14 days previously to a course of 200 cGy given on each of five consecutive days. FDR was associated with an increase in the uptake of decanol, and therefore a decrease in the effective resistance of the unstirred water layer. FDR had a variable effect on the uptake of glucose and leucine, with a decline in the value of the Michaelis constant (Km) and the passive permeability coefficient for glucose (Pd), whereas the Km for leucine was unchanged and the Pd for leucine was variably affected by FDR. The maximal transport rate (Jdm) for leucine progressively rose following FDR, whereas the Jdm for glucose initially rose, then fell. The uptake of galactose and medium chain-length fatty acids was unchanged by FDR, whereas the jejunal uptake of myristic acid rose, and the uptake of cholic acid declined, then returned to normal. FDR was associated with greater body weight gain and jejunal and ileal weight. The changes in nutrient uptake following FDR differed from the absorption changes occurring after a single dose of radiation. Thus, fractionated doses of abdominal radiation produce complex changes in the intestinal uptake of actively and passively transported nutrients, and these variable changes are influenced by the time following radiation exposure and by the solute studied.

OSTI ID:
5001111
Journal Information:
Int. J. Radiat. Oncol., Biol. Phys.; (United States), Journal Name: Int. J. Radiat. Oncol., Biol. Phys.; (United States) Vol. 6; ISSN IOBPD
Country of Publication:
United States
Language:
English