Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410
- and others
The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program.
- Research Organization:
- Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Electricite de France (EDF), 69 - Villeurbanne (France); Battelle, Columbus, OH (United States)
- OSTI ID:
- 489336
- Report Number(s):
- NUREG/CP--0155; CONF-9510432--; ON: TI97004806
- Country of Publication:
- United States
- Language:
- English
Similar Records
The effects of cyclic and dynamic loading on the fracture resistance of nuclear piping steels. Technical report, October 1992--April 1996
Comparison of through-wall-cracked pipe and compact tension specimen cyclic J-R curves