skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Genetic adaptation of bacteria to halogenated aliphatic compounds

Journal Article · · Environmental Health Perspectives
DOI:https://doi.org/10.2307/3432474· OSTI ID:486409

The bacterial degradation and detoxification of chlorinated xenobiotic compounds requires the production of enzymes that are capable of recognizing and converting compounds which do not occur at significant concentrations in nature. We have studied the catabolic route of 1,2-dichloroethane as an example of a pathway for the conversion of such a synthetic compound. In strains of Xanthobacter and Ancylobacter that have been isolated on 1,2-dichloroethane, the first catabolic step is catalyzed by a hydrolytic haloalkane dehalogenase. The enzyme converts 1,2-dichloroethane to 2-chloroethanol but is also active with many other environmentally important haloalkanes such as methylchloride, methylbromide, 1,2-dibromoethane, epichlorohydrin, and 1,3-dichloropropene. Further degradation of 2-chloroethanol proceeds by oxidation to the carboxylic acid and dehalogenation to glycolate. The aldehyde dehydrogenase prevents toxicity of the reactive chloroacetaldehyde that is formed as an intermediate and is necessary for establishing a functional 2-chloroethanol degradative pathway in a strain that is not capable of growth on this compound. 27 refs., 3 figs., 1 tab.

Sponsoring Organization:
USDOE
OSTI ID:
486409
Report Number(s):
CONF-9304308-; ISSN 0091-6765; TRN: 97:000705-0006
Journal Information:
Environmental Health Perspectives, Vol. 103, Issue Suppl.5; Conference: Biodegradation: its role in reducing toxicity and exposure to environmental contaminants conference, Research Triangle Park, NC (United States), 23-26 Apr 1993; Other Information: PBD: Jun 1995
Country of Publication:
United States
Language:
English

Similar Records

Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs
Journal Article · Sun Mar 01 00:00:00 EST 1992 · Applied and Environmental Microbiology; (United States) · OSTI ID:486409

Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10
Journal Article · Fri Mar 01 00:00:00 EST 1985 · Appl. Environ. Microbiol.; (United States) · OSTI ID:486409

Involvement of a large plasmid in the degradation of 1,2-dichloroethane by Xanthobacter autotrophicus
Journal Article · Sat Jun 01 00:00:00 EDT 1991 · Applied and Environmental Microbiology; (United States) · OSTI ID:486409