Chemistry and properties of imide oligomers containing pendant and terminal phenylethynyl groups
- NASA Langley Research Center, Hampton, VA (United States)
As part of a continuing effort to develop high performance/high temperature structural resins for aeronautical applications, oligomers containing latent reactive groups have been under investigation. Material requirements include ease of processability, retention of mechanical properties at elevated temperature, and no loss of mechanical properties after exposure to aircraft fluids such as hydraulic fluid, jet fuel, and cleaning fluids. The phenylethynyl group is an ideal latent reactive group. It has a relatively high cure temperature ({approximately}350{degrees}C) and a large processing window can be obtained with materials possessing the proper glass transition temperature. The thermally cured materials exhibit good retention of mechanical properties at elevated temperatures with no significant loss of properties after exposure to various solvents. To date, the phenylethynyl group has been incorporated either terminal or pendant to a variety of imide oligomers. Upon thermal cure, the phenylethynyl group undergoes chain extension, branching and/or crosslinking; however, the final cured product has not been well defined. As an extension of this work, a series of imide oligomers containing both pendant and terminal phenylethynyl groups (PTPEIs) were prepared as a means to improve retention of mechanical properties at elevated temperature while maintaining processability. The PTPEI oligomers were characterized, thermally cured and the cured polymers evaluated as unoriented thin films and adhesives. The chemistry, physical, and mechanical properties of these materials will be discussed.
- OSTI ID:
- 441472
- Report Number(s):
- CONF-960214--
- Country of Publication:
- United States
- Language:
- English
Similar Records
Evaluation of a high-temperature adhesive for aerospace structural bonding
Synthesis and characterization of high temperature curable poly(arylene ether) structural adhesive and composite matrices