Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Mn K-edge XANES study of the La{sub 1-x}Ca{sub x}MnO{sub 3} colossal magnetoresistive manganites

Journal Article · · Physical Review B
We report Mn K-edge x-ray absorption near edge structure (XANES) calculations of the La{sub 1-x}Ca{sub x}MnO{sub 3} manganites considering three pair correlations, according to the three fundamental degrees of freedom governing their unusual electronic properties, namely, the electronic structure of the unoccupied states probed by the Mn K-edge profile versus (i) local atomic distortions; (ii) local magnetic ordering; and (iii) the charge-transfer nature of the Mn-O bonds. The calculations are accompanied by Mn K-edge XANES measurements in the temperature range 30--300 K. The main features of the absorption edge can be qualitatively reproduced in terms of single-electron multiple-scattering calculations for an 87-atom cluster. Lattice polaronic distortions in La{sub 0.7}Ca{sub 0.3}MnO{sub 3} are simulated assuming a strongly distorted orthorhombic structure above and an almost undistorted rhombohedral structure below T{sub c}. The results roughly reproduce the energy ''shift'' across T{sub c} observed experimentally. Mn K-edge spin-polarized XANES spectra of the x=0, 0.3, and 1 samples are presented. An energy splitting between the majority- and minority-spin spectra of 0.5--1.1 eV contributes to the total XANES broadening below the Neel (Curie) temperature. A small feature B{sub 3} standing approximately 6 eV above the main absorption peak is beyond the scope of single-electron calculations; it is assigned to a shake-up transition. To illustrate, the calculated Mn K edge is obtained as the convolution product of the single-electron XANES and the spectrum of many-body excitations in the Mn-O electronic states upon the sudden switching on of the Mn 1s core hole. We investigate the charge-transfer (CT) versus. Mott-Hubbard-type ground state using the U{sub d}, {Delta}, and the T{sub dp} parameters determined by previous Mn 2p x-ray photoemission spectroscopy measurements and find that LaMnO{sub 3} should be viewed as a CT-type insulator with a substantial O 2p component in the ground state. In light of these results the controversial issue of Mn valence states in the manganites is critically reexamined. We argue that the disproportionation may be understood as a mixture of the CT many-body electronic configurations coupled with spin and lattice degrees of freedom.
Research Organization:
Brookhaven National Laboratory
Sponsoring Organization:
(US)
DOE Contract Number:
AC02-98CH10886
OSTI ID:
40276883
Journal Information:
Physical Review B, Journal Name: Physical Review B Journal Issue: 1 Vol. 64; ISSN 0163-1829
Publisher:
The American Physical Society
Country of Publication:
United States
Language:
English

Similar Records

Polarized x-ray absorption spectra of La{sub 1-x}Sr{sub 1+x}MnO{sub 4}: Electronic state of Mn atoms
Journal Article · Mon Aug 15 00:00:00 EDT 2005 · Physical Review. B, Condensed Matter and Materials Physics · OSTI ID:20719350

Effects of dopant ion and Mn valence state in the La{sub 1-x}A{sub x}MnO{sub 3} (A=Sr,Ba) colossal magnetoresistance films
Journal Article · Thu Jan 14 23:00:00 EST 2010 · Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films · OSTI ID:22053598

Polaronic effect in the x-ray absorption spectra of La1-xCaxMnO3 manganites
Journal Article · Thu Mar 07 19:00:00 EST 2019 · Journal of Physics. Condensed Matter · OSTI ID:1505421