skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of radio-frequency bias voltage on the optical and structural properties of hydrogenated amorphous silicon carbide

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.1367398· OSTI ID:40203733

Hydrogenated amorphous silicon carbide (a-Si{sub 1{minus}x}C{sub x}:H) films have been deposited using the electron cyclotron resonance chemical vapor deposition process under varying negative rf-bias voltage at the substrate. The optical and structural properties of these films are characterized using Rutherford backscattering spectroscopy, transmittance/reflectance spectrophotometry, photothermal deflection spectroscopy, Fourier transform infrared absorption, Raman scattering, and room temperature photoluminescence (PL). These films deposited using a gas mixture of silane, methane, and hydrogen at a constant gas flow ratio showed a slight increase in the carbon fraction x, but very obvious structural transformation, at increasing rf induced bias voltage from {minus}20 to {minus}120 V. Near stoichiometric a-Si{sub 1{minus}x}C{sub x}:H films with a carbon fraction x of almost 0.5 are achieved at low bias voltage range from {minus}20 to {minus}60 V. Visible PL with relatively low efficiency can be observed from such films at room temperature. For larger bias voltages from {minus}80 to {minus}120 V, slightly C-rich a-Si{sub 1{minus}x}C{sub x}:H films (x{gt}0.5) with larger optical gaps are obtained. These films have relatively higher PL efficiency, and the relative quantum efficiency was also found to depend strongly on the optical gap. Structurally, it was found that there is an increase in the hydrogen content and carbon sp{sup 2} bonding in the films at larger bias voltages. The latter leads to an increase in the disorder in the films. The linear relationship observed between the Urbach energy E{sub 0} and B factor in the Tauc equation suggests that the local defects related to microstructural disorder resulting from alloying with carbon dominate the overall defect structure of the films. Substrate biasing is noted to be crucial for the formation of Si{endash}C bonds, as deduced from the Raman scattering results. {copyright} 2001 American Institute of Physics.

Sponsoring Organization:
(US)
OSTI ID:
40203733
Journal Information:
Journal of Applied Physics, Vol. 89, Issue 11; Other Information: DOI: 10.1063/1.1367398; Othernumber: JAPIAU000089000011006153000001; 023111JAP; PBD: 1 Jun 2001; ISSN 0021-8979
Publisher:
The American Physical Society
Country of Publication:
United States
Language:
English