The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides
This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structure in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.
- Research Organization:
- Ames Lab., IA (United States)
- Sponsoring Organization:
- USDOE Office of Energy Research, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-82
- OSTI ID:
- 354997
- Report Number(s):
- IS-T--1870; ON: DE99003353
- Country of Publication:
- United States
- Language:
- English
Similar Records
Magnetic properties of CaCu{sub 5}-type RNi{sub 3}TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds
RNi{sub 8}Si{sub 3} (R=Gd,Tb): Novel ternary ordered derivatives of the BaCd{sub 11} type