Molecular dynamics computer simulation of permeation in solids
- Sandia National Labs., Albuquerque, NM (United States)
In this work the authors simulate permeation of gases and cations in solid models using molecular mechanics and a dual control volume grand canonical molecular dynamics technique. The molecular sieving nature of microporous zeolites are discussed and compared with that for amorphous silica made by sol-gel methods. One mesoporous and one microporous membrane model are tested with Lennard-Jones gases corresponding to He, H{sub 2}, Ar and CH{sub 4}. The mesoporous membrane model clearly follows a Knudsen diffusion mechanism, while the microporous model having a hard-sphere cutoff pore diameter of {approximately}3.4 {angstrom} demonstrates molecular sieving of the methane ({sigma} = 3.8 {angstrom}) but anomalous behavior for Ar ({sigma} = 3.4 {angstrom}). Preliminary results of Ca{sup +} diffusion in calcite and He/H{sub 2} diffusion in polyisobutylene are also presented.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (United States)
- OSTI ID:
- 332758
- Report Number(s):
- SAND--98-1591; CONF-9709141--PROC.; ON: DE99000778
- Country of Publication:
- United States
- Language:
- English
Similar Records
Theory of gas diffusion and permeation in inorganic molecular-sieve membranes
Hollow fiber inorganic membranes for gas separations