The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [LiN(C{sub 2}F{sub 5}SO{sub 2}){sub 2}]
- Tokyo Univ. of Agriculture and Technology, Koganei, Tokyo (Japan). Cooperative Research Center
- 3M Co., St. Paul, MN (United States)
A newly developed imide electrolyte salt, LiN(C{sub 2}F{sub 5}SO{sub 2}){sub 2} (LiBETI) was found to give very uniform, thin, and stable surface films on a lithium metal electrode in the propylene carbonate (PC) solution. LiBETI/PC was studied and compared to determine its ability to form such a stable surface film, with conventional electrolyte systems such as LiCF{sub 3}SO{sub 3}/PC, LiPF{sub 6}/PC, and LiN(CF{sub 3}So{sub 2}){sub 2}/PC (LiTFSI/PC). The surface film formed in LiBETI/PC system was a hemispherical, and the composition of the film consisted mainly of LiF, which is similar to that in a LiPF{sub 6}/PC system. Quartz crystal microbalance (QCM) and cyclic voltammetry (after the tenth cycle) indicated that the surface film formed in LiBETI/PC (ca. 50 nm) was thinner than those in LiPF{sub 6}/PC (ca. 90 nm), LiTFSI/PC (ca. 140 nm), or LiCF{sub 3}SO{sub 3}/PC (ca. 255 nm). The variation of the resonance resistance ({Delta}R) obtained from in situ CV/QCM measurement, which has been demonstrated to be a good measure of the surface roughness, also suggested that LiBETI/PC system gave a compact and smooth surface topology during lithium deposition-dissolution cycles. Impedance spectroscopy together with preliminary cycling tests showed that the LiBETI/PC system provides the highest cycling efficiency and improved cycleability among existing electrolyte salt systems in rechargeable battery systems employing lithium metal anodes.
- OSTI ID:
- 328201
- Journal Information:
- Journal of the Electrochemical Society, Journal Name: Journal of the Electrochemical Society Journal Issue: 2 Vol. 146; ISSN JESOAN; ISSN 0013-4651
- Country of Publication:
- United States
- Language:
- English
Similar Records
Compatibility of Lithium Salts with Solvent of the Non-Aqueous Electrolyte in Li–O2 Batteries
Electrochemical study of a new electrolyte for the lithium polymer system at low temperature