Ultra-fine grinding of coal
- China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School
Clean coal is known by its low ash content. Most coals contain a large amount of ash, some of which are finely distributed in the coal matrix. With the conventional cleaning process, such ash can not be removed efficiently. From existing coal preparation plants, much middling and high-ash slime come out as by-products and are used only as inferior fuel. Beijing Graduate School, China University of Mining and Technology, has developed a process for deep-cleaning of coal. This process includes ultra-fine grinding of coal to liberate the locked ash minerals followed by efficient separation with selective coagulation-flotation. With this process, concentrate can be extracted from inferior coal or ultra-clean coal can be obtained from conventional concentrate. Tumbling and vibrating ball mills are conventional for general grinding. However, for ultra-fine grinding they are inefficient and consume much more power. This paper gives some aspects of an ultra-fine grinding mill developed by Beijing Graduate School. The Ultra-Fine Grinding Mill is a JMI series wet grinding mill, and consists of a static horizontal closed tube with a rotor inside. The rotor assembly includes: a horizontal shaft, two vaned disks being fixed apart at the shaft, and longitudinal bar deflectors fixed across the disks. Sufficient clearance is allowed between the disk and end plates of the tube and between the disk rim and tube wall. This configuration enables free passage of grinding medium and pulp within the mill. While the mill is in operation, four principal movements of grinding medium and pulp are created: inward radially by deflectors, oppositely axial by vanes, tangential by rotation, and vibrating due to vortices behind the deflectors.
- OSTI ID:
- 324846
- Report Number(s):
- CONF-970931--
- Country of Publication:
- United States
- Language:
- English
Similar Records
Preparation of ultra-clean coals by oil agglomeration
Efficiency promotion in separation of ultra-fine coal