The Heisenberg representation of quantum computers
Since Shor`s discovery of an algorithm to factor numbers on a quantum computer in polynomial time, quantum computation has become a subject of immense interest. Unfortunately, one of the key features of quantum computers--the difficulty of describing them on classical computers--also makes it difficult to describe and understand precisely what can be done with them. A formalism describing the evolution of operators rather than states has proven extremely fruitful in understanding an important class of quantum operations. States used in error correction and certain communication protocols can be described by their stabilizer, a group of tensor products of Pauli matrices. Even this simple group structure is sufficient to allow a rich range of quantum effects, although it falls short of the full power of quantum computation.
- Research Organization:
- Los Alamos National Lab., NM (United States)
- Sponsoring Organization:
- USDOE Assistant Secretary for Human Resources and Administration, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 319738
- Report Number(s):
- LA-UR--98-2848; CONF-980788--; ON: DE99001840
- Country of Publication:
- United States
- Language:
- English
Similar Records
Representation of natural numbers in quantum mechanics