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Abstract

Since Shor’s discovery of an algorithm to factor numbers on a quantum
computer in polynomial time, quantum computation has become a subject
of immense interest. Unfortunately, one of the key features of quantum
computers — the difficulty of describing them on classical computers —
also makes it difficult to describe and understand precisely what can be
done with them. A formalism describing the evolution of operators rather
than states has proven extremely fruitful in understanding an important
class of quantum operations. States used in error correction and certain
communication protocols can be described by their stabilizer, a group of
tensor products of Pauli matrices. Even this simple group structure is
sufficient to allow a rich range of quantum effects, although it falls short
of the full power of quantum computation.

1 Introduction

Computers are physical objects. While that seems obvious, it has some pro-
found consequences. The familiar desktop and laptop computers and their big
cousins, the mainframes, all work in essentially the same way. Their components
are individual registers called bits, which can interact through various discrete
operations, called gates. The underlying hardware varies somewhat from sys-
tem to system, but currently, all bits are made up of fairly large numbers of
atoms. Consequently, they behave like macroscopic classical objects. Modern
computers are digital, so their bits take the discrete values of 0 and 1 {thus the
name “bit”).
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However, suppose instead that we had a computer whose bits were made up
of a small number of atoms, perhaps even just one atom per bit. Then the bits
in the computer would start to behave like quantum objects instead of classical
objects. Instead of the individual values 0 and 1, a bit might instead be in some
superposition of 0 and 1. A bit that can be in such a superposition is called a
quantum bit or qubit. If a classical computer has N bits, it has a total of 2V
possible states. In contrast, a guantum computer with N qubits can be in any
superposition of those 2V classical basis states, resulting in an arbitrary state
in a 2¥-dimensional Hilbert space. To even describe such a state on a classical
computer would require 2V — 1 complex numbers.

Classical algorithms are frequently classified as polynomial or exponential
{(which actually just means more than polynomial). A polynomial algorithm
to solve a problem of size N takes CN* steps (plus lower-order terms), for
some constants C and 4. Such an algorithm is considered to be efficient for
dealing with large problems, since the computation cost does not increase foo
much as N increases (although if C and/or k are large, the algorithm may not
be useful for realistic problems). An exponential time algorithm, on the other
hand, means it will be very difficult to solve large problems. Unfortunately,
many important problems have no known polynomial algorithm, forcing us to
resort to approximations or restricting us to small instances of the problem.

As long as we are using fundamentally classical bits, the algorithms we use
will be roughly equivalent. Perhaps some system uses a factor of NV more or
less steps than another, or perhaps C is larger or smaller, but an exponential
algorithm on one classical computer will translate to an exponential algorithm
on any other classical computer. However, if we change the underlying laws
of physics and work with quantum bits instead of classical bits, the situation
changes. Even if there is no polynomial classical algorithm to solve a problem,
there may be a polynomial quantum algorithm.

Perhaps the most dramatic known example of this is Shor’s factoring algo-
rithin [1}. Factoring an n-bit number can be very difficult, particularly if it
is the product of two primes of about the same size. Despite much work, no
polynomial classical algorithm is known. In fact, many classical cryptographic
protocols, such as RSA, depend on the fact that factoring is hard to do.

It turns out that factoring a number N is essentially equivalent (up to some
straightforward additional computation) to finding the order r of a random
number z modulo N. On a quantum computer, we can do this by starting with
a superposition Y |a} and calculating z° mod N in a second register, producing
the state Y |a)|z®). This state is periodic in a, with period r. Therefore, by
performing the discrete Fourier transform and measuring the result, we can
extract r and thus factor N. The result is a polynomial quantum algorithm
where all known classical algorithms are exponential.

Unfortunately, because quantum computers deal with a.rbltrary states in
such a large Hilbert space, it can be very difficult to construct and analyze
even relatively small networks of quantum gates. It turns out, however, that a




restricted class of networks can be comparatively easily described if we follow
the evolution, not of the state of the quantum computer, but instead of a set of
operators that could act on the computer [2]. In some ways, this is analogous
to the standard Heisenberg representation of quantum mechanics, where the
operators evolve in time, as opposed to the Schrédinger picture, where the
states evolve. Similar, but less powerful techniques, have been used in the NMR
community for years under the name “the product operator formalism.” For a
strengthening of the product operator formalism with applications to quantum
computing, see [3].

2 Basics of the Heisenberg Representation

Suppose we have a quantum computer in the state |}, and we apply the oper-
ator U. Then
UNp) = UNUUy), (1)

so after the operation, the operator UNU? acts on states in just the way the
operator N did before the operation. Therefore, applying U to the computer
transforms an arbitrary operation N by

N - UNU'. (2)

By following the evolution of a sufficiently large set of N’s, we will be able to
completely reconstruct the evolution of the state vector. The evolution (2} is
linear, so it will be sufficient to follow a set that spans the set of n x n matrices
M.,

For this set, we choose the Pauli group P, which consists of 4 - 4” elements.
The Pauli group contains the 4™ n-qubit tensor products of the identity I and
the Pauli matrices o, 0y, and o:

) I i) FE ) B

ol=gl=0=1 (4)

Note that

and
Oy =i0,0;. (3)

Therefore, to complete the group, we must allow each of the 4” tensor products
to have an overall phase of £1 or +i. Below, I will write X, Y, and Z instead
of 0, oy, and 0,.! The operators X;, Y;, and Z; are X, Y, and Z acting on the
ith qubit in the computer.

'In earlier publications, Y was instead equal to —ioy.




Furthermore, (2) is a multiplicative group homomorphism:
MN - UMNU' = (UMUY) (UNUY). (6)

Therefore, we can deduce the behavior of any element of the Pauli group by just
following the evolution of a generating set. A convenient generating set is just
{X1,...,Xn,21,...,Zp}. To completely specify a general operator, we need
only describe the evolution of 2n single-qubit operators.

3 The Clifford Group

Now, in general, the transformation (2) could take a Pauli matrix N to any of a
rather large class of unitary operators. If we consider arbitrary quantum gates,
the description of the transformation of our generating set will rapidly become
unmanageably large. Instead, we will consider a restricted class of gates — the
gates which transform elements of the Pauli group into other elements of the
Pauli group.

The set of operators which leave the group P fixed under conjugation form a
group N(P), the normalizer of P in U(2"). N(P) is also called the Clifford group
C for its relationship to the usual Clifford groups and Clifford algebras. While
C is considerably smaller than the full unitary group U(2%), it still contains a
number of operators of particular interest.

For instance, the Clifford group contains the single-qubit Hadamard trans-
form R:

Rli) =10+ -0, R= 2= (7 ). ¢

Another element is the phase gate P:

Pl =iy P=(§ 7). ®

i
It also contains the controlled-NOT (CNOT) gate, also known as the XOR:
CNOT[pMk) = |5)lj + k mod 2). 9

The first qubit is called the control qubit and the second is the target qubit.

In fact, R, P, and CNOT, applied to arbitrary qubits or pairs of qubits,
generate the full Clifford group C. The transformations these three gates induce
on the Pauli matrices are given in table 1. The table also gives the symbols
used to represent the Clifford group operations in gate networks, as well as the
symbol for a measurement.

If we apply R or P to qubit number j, I will write R(j) or P(j) to represent
the gate. If we apply a CNOT with qubit j as control and k as target, I will
write CNOT(j — k).




R X-Z _E }_
Z—-X
P XY {: }__
Z-2
CNOT X@I-+X®X ——
IRX-I®X
ZoI—ZQ1 e
I®RZ—-2Z®2Z
Measurement of A, plus operation B @
performed if measurement result is —1 5]

Table 1: Generators of the Clifford group, and their induced transformations
on the Pauli matrices.

4 Applying the Heisenberg Representation

To see how to apply the Heisenberg representation, consider the following ex-
ample:

Example 1 Alice’s quantum computer is working too well. Instead of perform-
ing single controlled-NOT gates, it does three at a time (figure la). What is it
actually doing?

To figure this out, we will follow the evolution of four operators: X1, X2, Z1,
and Z,. The bars above the operators indicate that these operators represent
the logical operators X, X», Z;, and Z, from the beginning of the computa-
tion. This terminology will make it easier to follow their evolution through the
complete circuit.

Consider first X;. It begins the computation as X; = X ® I. After the first
CNOT (A), it becomes X ® X, as per table 1. We can rewrite this as

(Xe(I®X), (10)
so step B (CNOT(2 — 1)) maps X, to
Xeh(XeX)=I®X. (11
Then after step C, we still have I ® X, so the full circuit maps
Xi=X®I-IeX (12)

We can perform a similar computation for X,, Z;, and Z3. The complete
calculation is summarized in figure 1b. The network of figure la exchanges
X; & X, and Z; < Zs5. Therefore, it swaps the first and second qubits.
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Figure 1: Alice’s quantum computer: a) network, b) analysis.

Example 2 The lever on Bob’s quantum computer is stuck in the “forward”
position, so it can only perform controlled-NOTs from qubit 1 to qubit 2. He
can still perform single-qubit operations normally. How can he perform a CNOT
from qubit 2 to qubit 1?

To solve this problem, the key is to notice the symmetric behavior of the
CNOT gate. If we switch X and Z and qubits 1 and 2, we get back the original
transformation. Therefore, the circuit of figure 2a acts as a CNOT(2 — 1).
An analysis of the circuit is given in figure 2b. We recognize the final result as
CNOT(2 — 1), and so conclude that the given circuit does produce the desired
gate.

Example 3 Bob is attempting to read a paper written in ancient Hittite. All he
can make sense of is a gate network, given in figure 3a. What does this network
do?

An analysis is given in figure 3b. Notice the two minus signs that appear.
For instance, in step C, for X2, we must apply R to Y. But

R(Y) = R(iXZ) = iR(X)R(Z) = iZX = -Y. (13)

All in all, after the complete network, we get the transformation given for step
D.

To convert back to the ket formalism, we can follow basis states. For in-
stance, the initial state |00) starts as an eigenvector of Z® I and I ® Z, with
both eigenvalues +1. Therefore, after the network, it will still be the +1 eigen-
vector of both Z; = ~Y ® Y and Z> = Z ® X. Thus, we deduce that this
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Figure 2: Bob’s CNOT(2 — 1): a) network, b) analysis.
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Figure 3: Ancient Hittite gate network: a) network, b) analysis
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Figure 4: Alice’s improved quantum computer: a) network, b) analysis.
network maps .
|00) — 3 (l00) + |01) — |10} + |11)). (14)

In addition, |01) = (I ® X) |00}, so |01) will map to X, applied to the image
of |00). Since X3 -+ —IQY,

j01) - %(—101) +1]00) + |11) + [10Y). (15)

We can similarly find the images of |10} and |11). We can put it all together
into the following unitary matrix:

1 i1
)

U=3l-1 i 1 - (16)
1§ -1 -

This does not correspond to any well-known operation, so just what the Hittites
used it for must remain a mystery.

5 Stabilizers

Example 4 By dint of no little hard work, Alice has partially fized her quantum
computer. Now it only does 2 CNOTs at a time. Unfortunately, she can only
" get this improvement if she puts in a |0) as the second input qubit (see figure {a).
What does it do now?

The input state for this network will always be a +1 eigenvector of I @ Z.
Therefore, the state of the system will always be a +1 eigenvector of Z». Since
the eigenvalue of Z is fixed, there is no point in following the evolution of X»
as well, since it would act to move the state to the irrelevant —1 eigenvector of
Z5. The full analysis of this circuit is given in figure 4b.

The format of this analysis is slightly different. The unlabelled operators are
those for which the state of the computer is a +1 eigenvector — in this case,




Z5. In addition, since among the labelled operators, we are only following X,
and Zi, they are instead labelled simply X and Z.

The final result may not be instantly recognizable. We can see that the
state is in a +1 eigenvector of Z ® I, so the first qubit is |0). Since Z ® I acts
as the identity on all possible final states of the computer, it also follows that
Z =2 Zis equivalent to (Z® I) (Z ® Z) = I ® Z. Therefore,

X - I®X, 17
Z - I®Z (18)

In other words, the original first qubit has migrated to the second. Alice’s
computer still performs a swap of the first and second qubits.

In the previous example, only a single qubit had a fixed input value, but
more generally, multiple qubits may be fixed or constrained. As above, it will
be helpful to consider the set of operators in P for which the input states are
+1 eigenvectors. The set of such operators is closed under multiplication, and
therefore forms a group, known as the stabilizer S [4, 5].

S = {M € P such that M|¢) = |¢) for all allowed inputs |[¢)}  (19)

In the previous example, the stabilizer only contained two elements: I ® Z and
the identity I ® I.
The stabilizer is always an Abelian group: If M, N € S, then

MNJ) = |¢) (20)
NMl) = |¢) (21)
[M,N]jg) = o. (22)

Any two elements of P either commute or anticommute, so it follows that M
and N commute. In addition, all elements of P square to 1 (operators with an
overall phase of 1 square to +1, operators with an overall phase of +7 square
to —1). The operators that square to —1 have imaginary eigenvalues, while
the operators that square to +1 have eigenvalues +1. Therefore, any stabilizer
is composed of operators in P which have an overall phase of 31, and which
square to +1. It follows that S is isomorphic to (Z3)* for some k.

In fact, & is exactly the number of input qubits that are fixed. The require-
ment that a single qubit is fixed provides a single operator for the stabilizer.
The k operators together then generate S — the 2% elements of S are products
of the generators.

The Pauli group operators that remain interesting are the operators that
act on the other n — k qubits (if there are n total qubits). There are a total of
2(n—k) such independent operators. When the stabilizer puts more complicated
constraints on the state, the X and Z operators are any 2(n — k) operators that
commute with S.
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Figure 5: Making a Bell state: a) network, b) analysis.

Example 5 Alice’s quantum computer is finglly fired. She wishes to demon-
strate her devotion to Bob by sending him half of a Bell state, along with a card
reading “forever entagled.” She performs the network of figure 5a and sends the
card and second qubit to Bob.

The analysis of the network appears in figure 5b. In this case, we only need
to consider elements of the stabilizer. Again, the generators of the stabilizer
are unlabelled. Their order does not matter — we could switch the generators,
and they still generate the same group. In fact, we could exchange one or
more of the generators with other elements of S without affecting anything,
as long as we still have a set of n independent operators to act as generators.
The transformation of the rest of the stabilizer is completely determined by the
transformation of the generators.

The final state in this case has stabilizer {I® I, X ® X, -Y ®Y, Z® Z}.
There is a single state which has eigenvalue +1 for all four of these operators.
It is given (up to normalization) by

[¥) = (Z M) 00}. (23)

MeS

This is the correct state because acting on it with NV € S just permutes the
terms in the sum, giving the same state.? In this case, the state is

1
7 (100} + [11)), (24)
which is indeed a Bell state.

A state which can be completely described by specifying the stabilizer is
called a stabilizer state. There are many states in the Hilbert space which are
not stabilizer states (in fact, there are only a finite number of stabilizer states
of a given size), but many of the most interesting states are stabilizer states.

°If —Z ® Z had been in the stabilizer instead of Z ® Z, |¢) would have been null. To
produce the correct state, we would have had to start with some state other than |00) on the
right.

10




Example 6 Alice decides she would rather send the singlet state, but doesn’t
want to go through the bother of another CNOT. How can she produce the singlet
from what she currently has?

The singlet state is

1
7 (101) — 10)). (25)
It has the stabilizer {I®I, - X® X, -Y®Y, ~Z®Z} (generated by - X ® X
and —Z ® Z). This is clearly very similar to her current stabilizer (generated
by X ® X and Z @ Z). All she needs to do is apply an operator that maps
XX >-X@XandZ®Z -5 -Z28Q2Z.

One possible operatoris Y ® I.

il

Y(X)=YXxY!t -YYtx = -X, (26)
Y(Z)=YZY! = -YYiZ=-2Z (27)

Another operator could be I® Y. X ® Z would also work:

(X®2)(X®X)(X®2) = -X®X, (28)
(X®2)(Z®2Z)(X®Z) = -Z&Z (29)

In fact, any operator E € P that anticommutes with both X®@ X and 20 2
would work: if {E, M} =0, then

E(M)=EME'= —-EE'M = -M. (30)

6 Quantum Error-Correcting Codes

Example 7 Alice and Bob sometimes bring quantum date home with them.
Their two-year-old child Alice, Jr. is very curious. Even if the data is stored
on a high shelf, Alice, Jr. sometimes gets to it. When she does, she puts a
single qubit in her mouth, randomizing it, then puts it back. After that, she
loses interest and goes off to create trouble elsewhere. How can Alice and Bob
tell if Alice, Jr. has disturbed their state? They do not want to destroy it if the
state is OK, but they are willing to discard it if it has been changed.

Alice and Bob cannot simply measure their quantum state, since that would
collapse any superposition it might be in. Instead, the solution is to group the
qubits in sets of two. To each pair, they add two qubits in a known state, and
apply some operations resulting in the stabilizer S generated by

XX®X®X
ZQZR7Z® 2. (31)

11
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Figure 6: A single qubit error-detecting code

For instance, they could use the circuit in figure 6.

The stabilizer (31) has the advantage that any single-qubit operator anti-
commutes with at least one of the generators. Therefore, if we apply any error
consisting of a single-qubit operator E € P, at least one of the generators will
change sign, as per (30). We can therefore detect that E has occurred by mea-
suring the generators of S. If the eigenvalues are +1, no error has occurred (or
two or more errors have occurred).

Of course, randomizing a qubit would generally not correspond to performing
an operator in P. However, P does span the set of matrices, so the most general
error will be the sum of operators from P. Such an error would put the state in
a superposition of eigenstates of S, but measuring the generators of S collapses
the state into just one eigenstate. This has the effect of collapsing the error into
some operator from P.

The states described by (31) form a quantum error-detecting code with the
ability to detect one error {7, 8]. A code that detects any error affecting less
than d qubits is said to have distance d. The four-qubit code thus has distance
2. Because the code is completely determined by its stabilizer, it is said to be a
stabilizer code.

Example 8 Alice and Bob wish to bring some particularly tmportant quantum
data home. They worked very hard to produce it, and do not want to have to
discard it if Alice, Jr. ruins a single qubit. What can they do?

Now, Alice and Bob have to go beyond an error-detecting code to a quantum
error-correcting code. However, the principles are the same. In order to correct
a single error, it is sufficient for Alice and Bob to be able to figure out exactly
what the error was. Since it is from P (or has been collapsed to an error from
P), they can then just apply the inverse to restore the original state.

Distinguishing the state E|y) from F|t) is the same problem as distinguish-
ing the state EF|y)3 from the state |¢)). Therefore, a code that detects the
error EF will distinguish the errors £ and F. In other words, to correct any

30r more precisely, Et F|y), which is the same for Hermitian E.

12




X Z Z X I
I X Z 2z X
X I X 2z z
Z X I X Z
X X X X X X
Z Z Z Z zZ Z

Table 2: The five-qubit code

single-qubit error, the code must detect all two-qubit errors. More generally, to
correct t arbitrary errors, the code should have distance 2t + 1.

The stabilizer of the smallest error-correcting code to fix one error is given
in table 2 [9, 10]. It encodes a single qubit in five qubits, and has distance three.
We say it is a [5,1,3] quantum code (or a [[5, 1, 3]] code).

The X and Z operators are, as before, the logical operators corresponding to
operations on the original data qubits. By analyzing their behavior, we could,
for instance, understand how to perform operations on the data without first
decoding the state (fault-tolerant operations [2, 6]).

1 said above that a stabilizer code has distance d when for every Pauli group
operator E with weight less than d, there is an element M of the stabilizer
that anticommutes with E. In fact, the requirement is slightly weaker. It is
possible for Ey) = |9} for all codewords [¢) for some particular E. In this
case, there is no way the code will be able to detect that E has occurred —
but there is no need to do so, since the state produced is exactly the correct
state. If E|y) = [y} Vi), then E € S. Therefore, the complete condition for
a stabilizer code to have distance d is that for all E € P of weight less than
d, either 3IM € S with {M,E} =0, or E € S. If the second condition is ever
needed, the code is said to be degenerate. If the second condition is not used,
as for the four- and five-qubit codes above, the code is nondegenerate.

Quantum error-correcting codes solve a serious difficulty in the design of
quantum computers. Simply having objects that behave in a more-or-less quan-
tum fashion is insufficient to produce a quantum computer. If a qubit interacts
with its environment, it will have a tendency to act as if it is in one or the other
basis state (for some particular basis, which depends on the interaction), just
as if it had been measured. A quantum computer with strong interactions with
the environment will thus tend to act as if it is in one of the 2V basis states
— in other words, it will act just like a classical computer. Using quantum
error correction and fault-tolerant operations, we can greatly simplify our task:
instead of having to build a quantum computer with essentially no uncontrolled
interaction with the environment, we need only build one where the interactions
are small enough to give us time to do error-correction.

40Only. Can you tell I'm a theorist?
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Figure 7: Creating the P gate: a) network, b) analysis.

7 Measurements

Example 9 Bob has bumped his head and cannot remember how to perform the
P gate. Luckily, he does remember how to perform the CNOT, the Pauli group,
and how to measure operators in the Pauli group. How can he make a P gate?

The solution is given in figure 7a. A full analysis appéa.rs in figure 7b. If the
initial state |a) = a|0) + b|1), then the state after completing step A is

al00) +b[1) = 5 (al0) ~ i8]1)) (10) + 1)) + 5 (al0) + BI1)) (0) ~ i11)) . (32)
Therefore, measuring I ® ¥ will yield either the state
(al0) ~ i811)) 10) + i1 . (3)

or the state
(al0) +ibj1}) (jO) —2[1}). (34)

The first has stabilizer I @ Y and X = —Y ® I, while the second has stabilizer
—I®Y and X = +Y @ I. In both cases, Z = Z ® I. The two possible states
after the measurement are related by the action of the operator Z ® Z. Note
that Z ® Z is the stabilizer after step A.

Therefore, step B consists of measuring I ® Y and performing Z ® Z if the
result is —1. That produces the final state given in the table. Since /® Y is in
the stabilizer, Y ® Y is equivalent to Y ® I on the states of interest. We can
recognize the final operation as a P gate. We can get a regular P gate either
by performing this 3 times, or more easily by applying Z once to the output
qubit.

The fact that we were able to convert the +1 and —1 measurement results
into the same state was no fluke. Generally, suppose we have a state which

14




is partially (or completely) described by a stabilizer S. Suppose we wish to
measure an operator A € P which anticommutes with some element M € S.
The measurement performs one of the operators

Py= (It 4), (35)

depending on whether the measurement result is +1. But
MP_M! = -;-M(I ~ AM' = %(I + AMM! = P,. (36)

Therefore, by applying M whenever the measurement result is —1, we can ensure
that we always get the state Py |¢).

We can go further and describe the evolution of the state using the Heisen-
berg formalism. The state P, |1} will always be in a +1 eigenstate of A, s0 A4 is
a member of the new stabilizer S’. M, on the other hand, will not be in S’. The
other generators will be in §’ if they commute with A, since commuting observ-
ables can have simultaneous eigenvectors. On the other hand, if N € S does
not commute with A, N ¢ §’; but M N does commute with 4, so MN € S'.

We can also follow the evolution of the X and Z operators. If they commute
with A, they are unaffected by the measurement of A. Our original presentation
of fj or —Z-,- might not commute with A, but recall that operators acting on the
state are equivalent up to multiplication by elements of the stabilizer. Therefore,
even if X; does not commute with A, MX; does, and acts the same way.
Therefore, under the measurement, X; & MX ;.

We can sum up the rules for evolving the operators after a measurement of
A (and correction if the result is —1) as follows:

1. Identify M € S satisfying {M, A} = 0.
2. Remove M from the stabilizer
3. Add A to the stabilizer

4. For each N, where N ‘runs over the other generators of S and the X and
Z operators, leave N alone if [N, 4] = 0, and replace N with MN if
{N,A}=0.

Example 10 (Quantum Teleportation) Alice needs to quickly send a qubit
to Bob, but Quantum Parcel Services (QPS) is on strike. Luckily, Alice shares
an EPR pair with Bob, and the regular classical phone lines are still open. How
can she get him the qubit?

The solution to this problem is quantum teleportation [11]. It is straightfor-
ward to analyze in the Heisenberg representation. I will assume Alice and Bob
start with the Bell state |00} +|11). The network is given in figure 8a. Alice and
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Figure 8: Quantum teleportation: a) network, b) analysis.
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Bob begin with one EPR pair. Alice and Bob perform some local operations,
and in the process Alice sends Bob two classical bits. The net result is that
Alice’s qubit is sent to Bob. The Heisenberg representation analysis is given in
figure 8b. The two classical bits sent from Alice to Bob are the two measure-
ment results, which are required for Bob to perform the correct operations to
turn the state into the +1 eigenvector of the two measured operators.

Since in this network, once a qubit is measured, it is completely determined
and never reused, we drop measured qubits from the analysis. A more compli-
cated network might include partial entangled measurements, in which case the
measured qubits would still have some interesting remaining degrees of freedom
and should be retained in the description. Note that when dropping qubits,
the size of the stabilizer shrinks, but we keep the same number of X and Z
operators, since we only drop qubits which are completely constrained by the
stabilizer.

Example 11 (Remote XOR) Alice forgot to perform a CNOT from another
qubit of hers to the one she sent to Bob. Unfortunately, they only have one more
shared EPR pair (Bob has been gambling at the entanglement casino and losing
heavily). Can she still perform the CNOT?

The network that allows Alice to perform a remote XOR to Bob’s qubit is
given in figure 9a. Alice and Bob start with one EPR pair. They each perform a
CNOT and a measurement, then send each other their measurement results (for
a total of one classical bit each direction). The result is a CNOT from Alice’s
qubit to Bob’s. This operation has also been studied by [12]. The analysis
appears in figure 9b.

8 Discussion and Summary

The methods comprising the Heisenberg representation of quantum computa-
tion allow a much more rapid analysis of many networks than can be done using
the usual methods of multiplying together the full 2" x 2™ unitary matrices de-
scribing the evolution of an n qubit system, or by directly following the evolution
of state vectors in such a system. For most networks, the usual methods require
keeping track of an exponential number of matrix elements or coefficients.

In contrast, for a network composed only of gates from the Clifford group and
measurements of Pauli group operators, the Heisenberg representation provides
an excellent method of describing the system. In such networks, it is only
necessary to follow the evolution of at most 2n X and Z operators, and each
one is a member of the Pauli group, so can be described by 2n + 1 bits. Thus,
the time and space required to analyze such a network on a classical computer
are polynomials in n, instead of exponentials.

In fact, we can go beyond just Clifford group elements and Pauli group
measurements, and also add Clifford group operations conditioned on classical
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bits (which might, of course, be the results of measurements performed earlier
in the computation). This collection of observations forms the proof of the
following theorem [13]:

Theorem 1 (Knill’s theorem) Any quantum computer performing only: a)
Clifford group gates, b} measurements of Pauli group operators, and ¢) Clifford
group operations conditioned on classical bits, which may be the results of earlier
measurements, can be perfectly simulated in polynomial time on a probabilistic
classical computer.

Of course, Clifford group operations and Pauli group measurements do not
provide a universal set of quantum gates. Another gate is needed, which could
be a quantum version of the classical Toffoli gate (|a)|b)|c) — |a)|b)|c + ab}),
a 7/8 rotation of the Bloch sphere, or the square root of the controlled-NOT
gate, among other possibilities. The Clifford group plus an appropriate extra
gate generate a set of unitary operators dense in U(2") and therefore form a
universal set of gates.

Knill’s theorem implies that quantum computation is only more powerful
than classical computation when it uses gates outside the Clifford group. How-
ever, networks using only Clifford group gates also have a number of important
applications in the area of quantum communications. Quantum error-correcting
codes are an important example — stabilizer codes use only Clifford group gates
for encoding and decoding, yet are extremely useful for overcoming the effects
of errors and decoherence. Other important communication problems, such as
quantum teleportation, also use only Clifford group gates and measurements.
Finally, networks consisting of Clifford group gates and measurements may pro-
vide useful subroutines to more complex quantum computations; an efficient
method of analyzing and searching for such subroutines could prove very useful.
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