Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Opportunities in AI/ML for the Rubin LSST Dark Energy Science Collaboration

Journal Article · · No journal information
 [1];  [2];  [3];  [3];  [4];  [5];  [6];  [7];  [8];  [1];  [9];  [10];  [11];  [12];  [13];  [14];  [15];  [16];  [17];  [18] more »;  [19];  [20];  [21];  [22];  [23];  [24];  [25];  [1];  [26];  [27];  [28];  [1];  [29];  [30];  [31];  [32];  [33];  [34];  [35];  [36];  [37];  [38];  [39];  [10];  [25];  [40];  [41];  [3];  [42];  [1];  [43];  [44];  [16];  [45];  [45];  [25];  [16];  [37];  [46];  [36];  [39];  [47];  [40];  [48];  [49] « less
  1. APC, Paris
  2. U. Michigan, Ann Arbor; Michigan U., LCTP
  3. Argonne (main)
  4. Unlisted
  5. Cambridge U.; Cambridge U., Inst. of Astron.
  6. SLAC
  7. Rio de Janeiro, CBPF
  8. Milan Bicocca U.
  9. IJCLab, Orsay
  10. Chicago U., Astron. Astrophys. Ctr.; Chicago U., KICP; SkAI, Chicago
  11. Fermilab; Chicago U., Astron. Astrophys. Ctr.; SkAI, Chicago
  12. LPC, Clermont-Ferrand
  13. Minnesota U.
  14. KIPAC, Menlo Park; Stanford U.; SLAC
  15. San Luis Potosi U.
  16. Madrid, CIEMAT; Madrid, Escuela Tec. Sup. Ing. Ind.
  17. SLAC; KIPAC, Menlo Park
  18. KIPAC, Menlo Park; Stanford U., ITP; SLAC
  19. Cordoba U.
  20. Fermilab; Chicago U., Astron. Astrophys. Ctr.; Chicago U., EFI; Chicago U., KICP; SkAI, Chicago
  21. Stanford U.; SLAC
  22. Harvard U.; IAIFI, Cambridge; Harvard-Smithsonian Ctr. Astrophys.; MIT, MKI
  23. Barcelona, IFAE
  24. Washington U., Seattle
  25. Cambridge U., KICC
  26. Imperial Coll., London
  27. SkAI, Chicago; Chicago U.
  28. U. Texas, Dallas
  29. Duke U.
  30. AIM, Saclay
  31. Newcastle upon Tyne U.
  32. Princeton U.
  33. Western Cape U.
  34. Utah U.
  35. Princeton U., Astrophys. Sci. Dept.
  36. Illinois U., Urbana, Astron. Dept.
  37. ETH, Zurich (main)
  38. Swinburne U. Tech., Hawthorn
  39. Illinois U., Urbana, Astron. Dept.; SkAI, Chicago
  40. Montreal U.; U. Montreal (main)
  41. KIPAC, Menlo Park; SLAC; Princeton U., Astrophys. Sci. Dept.
  42. Chicago U., Astron. Astrophys. Ctr.; SkAI, Chicago
  43. University Coll. London
  44. Milan U.; Turku U.; Helsinki U.; IASF, Milan
  45. Florida U.; Northwestern U. (main); SkAI, Chicago
  46. SISSA, Trieste; INFN, Trieste; Imperial Coll., London
  47. U. Michigan, Ann Arbor
  48. Pittsburgh U.
  49. Natl. Solar Observ., Tucson
The Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) will produce unprecedented volumes of heterogeneous astronomical data (images, catalogs, and alerts) that challenge traditional analysis pipelines. The LSST Dark Energy Science Collaboration (DESC) aims to derive robust constraints on dark energy and dark matter from these data, requiring methods that are statistically powerful, scalable, and operationally reliable. Artificial intelligence and machine learning (AI/ML) are already embedded across DESC science workflows, from photometric redshifts and transient classification to weak lensing inference and cosmological simulations. Yet their utility for precision cosmology hinges on trustworthy uncertainty quantification, robustness to covariate shift and model misspecification, and reproducible integration within scientific pipelines. This white paper surveys the current landscape of AI/ML across DESC's primary cosmological probes and cross-cutting analyses, revealing that the same core methodologies and fundamental challenges recur across disparate science cases. Since progress on these cross-cutting challenges would benefit multiple probes simultaneously, we identify key methodological research priorities, including Bayesian inference at scale, physics-informed methods, validation frameworks, and active learning for discovery. With an eye on emerging techniques, we also explore the potential of the latest foundation model methodologies and LLM-driven agentic AI systems to reshape DESC workflows, provided their deployment is coupled with rigorous evaluation and governance. Finally, we discuss critical software, computing, data infrastructure, and human capital requirements for the successful deployment of these new methodologies, and consider associated risks and opportunities for broader coordination with external actors.
Research Organization:
APC, Paris; AIM, Saclay; MIT, MKI; San Luis Potosi U.; Montreal U.; Helsinki U.; Swinburne U. Tech., Hawthorn; Chicago U., EFI; Milan U.; Barcelona, IFAE; Cambridge U., Inst. of Astron.; Madrid, CIEMAT; Harvard-Smithsonian Ctr. Astrophys.; Rio de Janeiro, CBPF; Imperial Coll., London; LPC, Clermont-Ferrand; ETH, Zurich (main); Stanford U., ITP; U. Michigan, Ann Arbor; SkAI, Chicago; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Florida U.; Western Cape U.; Milan Bicocca U.; Natl. Solar Observ., Tucson; SISSA, Trieste; Cambridge U., KICC; Harvard U.; Michigan U., LCTP; Unlisted; IJCLab, Orsay; Stanford U.; Chicago U., KICP; U. Texas, Dallas; Duke U.; Illinois U., Urbana, Astron. Dept.; Princeton U.; Turku U.; INFN, Trieste; Northwestern U. (main); Chicago U., Astron. Astrophys. Ctr.; Argonne National Laboratory (ANL), Argonne, IL (United States); Minnesota U.; IAIFI, Cambridge; Newcastle upon Tyne U.; Princeton U., Astrophys. Sci. Dept.; IASF, Milan; Utah U.; Madrid, Escuela Tec. Sup. Ing. Ind.; U. Montreal (main); University Coll. London; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Cordoba U.; Washington U., Seattle; Pittsburgh U.; Cambridge U.; Chicago U.
Sponsoring Organization:
US Department of Energy
DOE Contract Number:
89243024CSC000002
OSTI ID:
3014041
Report Number(s):
FERMILAB-PUB-25-0886-CSAID-PPD; oai:inspirehep.net:3109591; arXiv:2601.14235
Journal Information:
No journal information, Journal Name: No journal information
Country of Publication:
United States
Language:
English

Similar Records

The catalog-to-cosmology framework for weak lensing and galaxy clustering for LSST
Journal Article · Mon Apr 24 20:00:00 EDT 2023 · The Open Journal of Astrophysics · OSTI ID:1973625

Related Subjects