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24Instituto de Astronomı́a Teórica y Experimental (IATE - UNC and CONICET CCT Córdoba), Observatorio
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The Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) will produce unprecedented volumes of het-
erogeneous astronomical data—images, catalogs, and alerts—that challenge traditional analysis pipelines. The LSST
Dark Energy Science Collaboration (DESC) aims to derive robust constraints on dark energy and dark matter from
these data, requiring methods that are statistically powerful, scalable, and operationally reliable. Artificial intelligence
and machine learning (AI/ML) are already embedded across DESC science workflows, from photometric redshifts and
transient classification to weak lensing inference and cosmological simulations. Yet their utility for precision cosmology
hinges on trustworthy uncertainty quantification, robustness to covariate shift and model misspecification, and repro-
ducible integration within scientific pipelines. This white paper surveys the current landscape of AI/ML across DESC’s
primary cosmological probes and cross-cutting analyses, revealing that the same core methodologies and fundamental
challenges recur across disparate science cases. Since progress on these cross-cutting challenges would benefit mul-
tiple probes simultaneously, we identify key methodological research priorities, including Bayesian inference at scale,
physics-informed methods, validation frameworks, and active learning for discovery. With an eye on emerging tech-
niques, we also explore the potential of the latest foundation model methodologies and LLM-driven agentic AI systems
to reshape DESC workflows, provided their deployment is coupled with rigorous evaluation and governance. Finally,
we discuss critical software, computing, data infrastructure, and human capital requirements for the successful de-
ployment of these new methodologies, and consider associated risks and opportunities for broader coordination with
external actors. Taken together, DESC’s combination of community-accessible data, demanding scientific requirements,
and mature simulation infrastructure makes the collaboration an excellent testbed for developing and validating robust
AI/ML practices for fundamental physics.
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1. Executive Summary

The Legacy Survey of Space and Time Dark Energy Science Collaboration (LSST DESC) is an interna-
tional collaboration whose mission is to measure the cosmic expansion history and the growth of structure
using data from the Vera C. Rubin Observatory, thereby constraining the nature of dark energy and dark
matter. Achieving these science goals requires jointly analyzing multiple cosmological probes—weak and
strong gravitational lensing, galaxy clusters, Type Ia supernovae, and large-scale structure—each present-
ing distinct analysis challenges at LSST’s unprecedented data volumes. Extracting robust cosmological
constraints demands methods that deliver trustworthy uncertainty quantification, remain robust to system-
atic effects and model misspecification, and scale to the full petabyte-scale survey. These requirements mo-
tivate the integration of artificial intelligence (AI) and machine learning (ML) into DESC pipelines. DESC’s
combination of community-accessible data, mature simulation infrastructure, and rigorous scientific stan-
dards makes the collaboration an excellent testbed for developing robust AI/ML practices for fundamental
physics.

Recognizing this situation, the DESC formed the AI for DESC Task Force with the following charge:

• Catalog the AI/ML needs, use cases, and projects in DESC.

• Identify current gaps in the adoption of AI/ML methodologies by leveraging expert domain knowledge.

• Identify the computational resources, storage, data access, and human research and managerial
time needed to take full advantage of AI/ML-related opportunities.

• Identify either qualitatively or quantitatively the projected gains in DESC’s science that would result
from pursuing AI/ML-related opportunities.

The response to the task force charge is presented in this white paper. It demonstrates the breadth and
importance of AI and ML research within DESC, and highlights the challenges and promising pathways for
future work.

In this Executive Summary, we synthesize key recommendations and opportunities into a coherent AI/ML
strategy for DESC. Three core principles guide this strategy:

• AI/ML tools should be carefully integrated into DESC pipelines to facilitate scientific analyses
while fulfilling the stringent requirements of precision cosmology and preserving scientific account-
ability and transparency.

• A durable AI/ML ecosystem should be built within DESC and maintained over the survey lifetime,
for the collaborative development, validation, and deployment of production-grade AI/ML tools.

• AI/ML must be integrated into DESC in ways that preserve and support the human-centric nature
of research, improve accessibility, strengthen collaboration quality, and amplify rather than supplant
members’ contributions.

We have defined a series of recommendations (R) and opportunities (O) in several key areas within DESC in
support of these principles. Recommendations are actions that the collaboration should undertake to meet
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its scientific requirements and ensure robust integration of AI and ML into DESC pipelines. Opportunities
indicate areas where DESC can extend beyond its requirements and assume a leadership role, influence
broader community standards, or explore higher-risk, higher-reward efforts. We summarize these below,
along with references throughout the paper where they are discussed.

Advancing Key Methodological Research Directions —Challenges such as uncertainty quantification, ro-
bustness to model misspecification, and novelty detection recur across DESC science cases. Progress on
these foundational challenges will benefit all probes and merit dedicated effort.

• R1: Prioritize Fundamental Methodological Research. Foster collaboration-wide research in sev-
eral critical areas: quantification of systematic and statistical uncertainties, simulation-based infer-
ence robustness, physics-informed modeling (hybrid generative-physical architectures), validation of
neural posteriors, and novelty detection. Progress on these fundamental challenges will have an
outsized impact across many DESC science cases. (Section 3, Section 4)

• O1: Methodological Leadership in Trustworthy AI. The challenges DESC faces (robust inference
under misspecification, calibrated uncertainty quantification at scale, physics-informed learning) are
frontier problems in machine learning broadly, creating natural opportunities to attract specialist col-
laborators and position DESC as a leader in trustworthy AI for fundamental science. (Section 4,
Section 7)

• O2: DESC Simulation Assets as Community Benchmarks. DESC’s combination of petabyte-
scale community data, stringent scientific requirements, and rich simulation assets—e.g. the Photo-
metric LSST Astronomical Time Series Classification Challenge (PLAsTiCC), Extended LSST As-
tronomical Time Series Classification Challenge (ELAsTiCC), and Cosmological Data Challenge
2 (CosmoDC2)—makes it an ideal testbed for pioneering robust AI/ML practices. Benchmarks
and governance standards developed here can become reference implementations for fundamen-
tal physics, and attract colleagues in mathematics and computer science who see DESC’s frontier
challenges as compelling application areas for new methods. (Section 3, Section 4, Section 7)

Foundation Models —Foundation models, which produce generalizable representations of large-scale, het-
erogeneous, and multi-modal datasets, are transforming AI capabilities. DESC must develop both the in-
frastructure to deploy them and the benchmarks to validate them for precision cosmology.

• R2: Develop Shared Foundation Model Infrastructure. Build a shared foundation model back-
bone for DESC, consistent across data modalities and of production-grade quality, and served behind
stable APIs. (Section 5, Section 6)

• R3: Establish DESC-specific Foundation Model Validation Standards. Create benchmarks that
go beyond industry practice: uncertainty calibration, robustness to systematics, sensitivity to training
biases, stress tests under distribution shift (temporal, spatial, cross-survey). Develop astronomy-
specific interpretability tools to verify the physically meaningful structure preserved within model
representations. (Section 5, Section 8)

• O3: Leadership of Rubin-wide Development of Foundation Models. DESC could play a central
role in coordinating foundation model development across Rubin Science Collaborations and LSST
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Interdisciplinary Network for Collaboration and Computing Frameworks (LINCC Frameworks), lever-
aging distributed computing resources from universities to Department of Energy (DOE) or European
High-Performance Computing Joint Undertaking (EuroHPC) facilities. (Section 5, Section 7)

Large Language Models & Agentic AI —Large language models (LLMs) and agentic AI offer avenues to
accelerate research and lower the barrier to entry for complex cosmological analyses in DESC. Harnessing
this potential responsibly will require thoughtful governance and rigorous validation frameworks.

• R4: Establish Governance for LLMs and Agentic Systems. Coordinate DESC-wide activities in-
volving LLMs and agents, establish best practices including evaluation, review, and tiger-team review
of pilot studies. Include critical discussions of the technology’s limitations and effects on human re-
searchers, with input from experts across domains. Engage with Rubin Data Management to ensure
that agentic AI can interface with data products effectively and reliably. (Section 5, Section 8)

• R5: Build Natural Language Interfaces to DESC Resources. Develop retrieval-augmented gen-
eration (RAG)-based interfaces to DESC documentation, simulations, and data products, lowering
onboarding barriers and democratizing access to complex pipelines. (Section 5, Section 6)

• O4: Pioneering Agentic AI for Scientific Rigor and Reproducibility. An important application of
this work could be “DESC research agents” that automate execution, documentation, and validation
of analyses against standardized benchmarks, coupling these systems to clear governance and
tiger-team review procedures so that agentic workflows enhance transparency, provenance, and
trust in DESC results. (Section 5, Section 8)

Infrastructure & Software —DESC has a mature ecosystem of cosmological analysis pipelines. Building
on this foundation, strategic development of AI software stacks, differentiable programming, and computing
infrastructure can act as multipliers that benefit all science cases.

• R6: Establish a Durable AI Software Stack. Adopt a coherent set of frameworks, tooling, and
model export standards. The stack should be portable across DESC computational facilities, sustain-
able over the 10-year survey, and prioritize open governance to avoid proprietary lock-in. (Section 6)

• R7: Develop a Differentiable Programming Ecosystem. Adoption of an interoperable differen-
tiable programming ecosystem (e.g. based on JAX) will act as a multiplier, simultaneously enabling
gradient-based sampling, GPU acceleration, hybrid physics-ML models, and end-to-end optimization
across DESC pipelines. (Section 3, Section 4, Section 6)

• R8: Secure Access to Emerging Computing Infrastructure. Significant new AI-oriented com-
puting is becoming available: DOE infrastructure such as the American Science Cloud (AmSC); the
Independent Data Access Center (IDAC) network; and EuroHPC systems such as Leonardo in Italy,
Large Unified Modern Infrastructure (LUMI) in Finland, and the Joint Undertaking Pioneer for Innova-
tive and Transformative Exascale Research (JUPITER) exascale system in Germany. DESC should
engage early to shape these resources for cosmology and secure allocations for foundation model
training at scales infeasible on current systems. (Section 6, Section 7)
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Organizational Structure & Governance —The DESC is organized into computing, technical, and analy-
sis working groups (WGs)2, with analysis working groups primarily aligned with key cosmological probes.
Effective AI/ML integration across these groups requires consistent coordination mechanisms and clear
standards for development, validation, and deployment.

• R9: Develop DESC-wide AI/ML Coordination Mechanisms. Establish structures (e.g., standing
working group, cross-WG task forces, regular interchange meetings) to share methodological inno-
vations across probes, tackle common challenges collectively, and minimize duplication. Facilitate
rapid dissemination through workshops, tutorials, and methodological discussions. (Section 3)

• R10: Develop AI/ML Best Practice Guidelines. Create guidelines to help DESC members de-
velop robust AI/ML analyses, covering topics such as reproducibility, provenance tracking, validation
checks, and comprehensive benchmarking—particularly for foundation models and other shared
deliverables whose broad applicability demands thorough vetting before widespread adoption. (Sec-
tion 3, Section 4, Section 5)

Human Capital & Sustainability —The promise of AI/ML for accelerating cosmology with LSST will not
be realized without training and support of DESC members. Sustainable adoption of AI/ML also requires
attention to the growing computational demands and resulting footprint these methods entail.

• R11: Focus on AI/ML for Augmenting Rather Than Replacing Understanding. DESC must
strengthen and maintain the technical literacy of the collaboration in AI/ML applications as tools for
science rather than supplanting understanding. (Section 8)

• R12: Track and Optimize Resource Footprint. DESC should develop tools for monitoring and
optimizing computational resource usage of AI/ML models, enabling the collaboration to maximize
scientific productivity and make informed decisions about resource allocation and environmental
impact. (Section 8)

External Coordination & Partnerships —DESC operates within a rich ecosystem of other Rubin science
collaborations, AI institutes, cosmology experiments, and alert brokers that filter streaming Rubin data.
Deliberate coordination between these groups will amplify impact and avoid duplicated effort.

• R13: Coordinate Across Science Collaborations. Partner with other LSST collaborations and
other cosmology experiments. The former include the Informatics and Statistics Science Collabora-
tion (ISSC), Transients and Variable Stars Science Collaboration (TVSSC), Strong Lensing Science
Collaboration (SLSC), Active Galactic Nuclei Science Collaboration (AGNSC), and Galaxies Sci-
ence Collaboration (GSC). The latter include the Dark Energy Spectroscopic Instrument (DESI), the
4-meter Multi-Object Spectroscopic Telescope (4MOST), the European Space Agency (ESA) Eu-
clid Mission science teams, and the Nancy Grace Roman Space Telescope science collaborations.
Areas of coordination should include methodological development, time-series and broker stress-
testing, deblending/morphology benchmarks, and sharing tools and best practices. (Section 7)

2 https://lsstdesc.org/pages/organization.html
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• R14: Engage with AI Institutes and Networks. National Science Foundation (NSF)–Simons AI
Institutes (with explicit LSST/cosmology themes), and European networks such as the European
Coalition for AI for Fundamental Physics (EuCAIF)3 and European Laboratory for Learning and In-
telligent Systems (ELLIS)4, are natural partners. Build systematic engagement through co-funded
postdocs, shared workshops, joint proposals, and benchmark datasets. These efforts would connect
DESC to the broader AI-for-science ecosystem. (Section 7)

• R15: Develop the Human-Machine Interface. Develop close connections between DESC, other
LSST science collaborations, in-kind follow-up programs, alert broker teams, LSST data manage-
ment, and citizen scientists, to facilitate active learning for classification, anomaly detection, and
human-in-the-loop interpretability. (Section 4, Section 7)

• O5: DESC Integration with the Broker Ecosystem. DESC members are embedded in all seven
Rubin Community Broker teams—tight coordination gives direct leverage over SN Ia sample purity,
selection effects, and host-galaxy priors, plus an on-ramp from research prototypes to community-
facing services. (Section 3, Section 7)

Implementing these recommendations and capitalizing on these opportunities would position DESC to fully
exploit LSST’s statistical power for cosmology while uncovering unexpected phenomena in the largest op-
tical astronomical dataset ever collected. This will require sustained investment in researchers who bridge
domain science and AI/ML methodology. Such investment would benefit not only DESC, but the broader
effort to advance AI as a tool for fundamental scientific discovery.

3 https://eucaif.org/
4 https://ellis.eu
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2. Introduction

The Vera C. Rubin Observatory’s LSST will produce unprecedented volumes of heterogeneous data (im-
ages, catalogs, alerts) whose full scientific exploitation demands continued methodological innovation. The
mission of the DESC is to convert these data into robust constraints on the dark sector by jointly measuring
the cosmic expansion history and the growth of structure, thereby shedding much-needed light on dark
energy, dark matter, and possible deviations from general relativity. Delivering on these objectives requires
methods that are statistically powerful, scalable, and operationally reliable. Recent advances in AI and ML
show great promise for critical data analysis roles but still need to meet stringent requirements to be truly
useful. artificial intelligence (AI) refers broadly to systems capable of performing tasks that typically require
human intelligence, including reasoning, perception, learning, and decision-making. machine learning (ML)
is a subfield of AI in which algorithms learn patterns and relationships from data to make predictions or deci-
sions, encompassing both classical methods (e.g., random forests, Gaussian processes) and deep learning
(multi-layer neural networks). In the DESC context, ML methods learn mappings between variables (e.g.,
photometry to redshift, galaxy fields to cosmological parameters) and can be deployed at multiple stages of
analysis. Their scientific utility, however, hinges on trustworthy uncertainty quantification and reproducible
integration within DESC workflows; without these elements, ML methods cannot meet the stringent require-
ments of cosmological inference. In parallel, we use AI to denote systems capable of complex cognitive
tasks—such as reasoning, knowledge synthesis, and natural language understanding—that can potentially
orchestrate tools, generate code, and reshape scientific workflows. As with ML, turning recent AI advances
into reliable accelerators of discovery remains an open problem that requires careful evaluation and gover-
nance.

The strategic question for DESC is therefore how to develop and integrate AI/ML the right way, so that
these approaches become dependable components of LSST-era analyses. Intrinsically, this question is
relevant to a broad range of scientific endeavors and collaborations. Still, DESC is well positioned to
pioneer robust AI/ML practices for fundamental physics as an international collaboration that works with
community-accessible data, has a strong open-source culture, and pursues extremely demanding scientific
objectives. In this white paper, we set out a strategic framework for how DESC should organize its AI/ML
efforts, prioritize methodological investments, and respond effectively to new opportunities arising from
rapid AI/ML progress. This paper is structured around four interconnected perspectives on AI/ML within
DESC, each building on the previous to articulate a comprehensive strategy:

Section 3: The Current Landscape: ML Across DESC Science —Machine learning is not a future aspiration
for DESC: it is already deeply embedded in current science workflows. Here, we survey how ML method-
ologies intersect with DESC’s primary cosmological probes: strong and weak gravitational lensing, galaxy
clusters, Type Ia supernova (SN Ia) cosmology, large-scale structure, as well as cross-cutting analysis com-
ponents including simulations, theory and modeling, deblending, photometric redshift (photo-z) estimation,
and shape measurement. This inventory reveals a striking pattern: the same core methodologies (e.g.
simulation based inference, differentiable programming, deep learning) appear repeatedly across disparate
science cases, while the same fundamental challenges (e.g. uncertainty quantification, robustness to co-
variate shift and to model misspecification) represent concrete challenges across multiple working groups
(see Figure 1).
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Figure 1. Transversal connections between DESC science applications (left), AI/ML methodologies (top), and shared
challenges (right), as surfaced by Section 3. The recurring appearance of the same methods and challenges across
disparate science cases motivates collaboration-wide coordination of AI/ML efforts rather than siloed development
within individual working groups. An interactive version of this diagram is available at https://lsstdesc.org/AI_For_
DESC/figures/chord-diagram.html

Section 4: Lifting the Limits of ML: Methodological Research Priorities —Building on the challenges sur-
faced in Section 3, we identify the key methodological research axes where targeted investment can lift
current limitations and enable ML methods to meet the precision and reliability standards demanded by
LSST-era cosmology. We organize these priorities around several interconnected themes:

• Bayesian inference and uncertainty quantification (UQ): Developing fast and scalable inference
techniques that may unlock promising high-dimensional hierarchical models. Improving methods for
reliably estimating uncertainty arising from limited training data and model limitations.

• Simulation-based inference (SBI) and model misspecification: Advancing neural density estima-
tion (NDE) techniques, optimal summarization methods, and diagnostics for detecting and mitigating
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the biases introduced when training simulations imperfectly represent real observations or when
training datasets fail to capture the full diversity of LSST data.

• Physics-informed approaches: Hybridizing explicit physical models with flexible generative com-
ponents (flows, diffusion models) and advancing differentiable programming frameworks that embed
cosmological theory directly into ML architectures, ensuring that learned components remain inter-
pretable, physically consistent, and robust to extrapolation.

• Novelty detection and discovery: Developing representation learning and active human–AI col-
laboration frameworks capable of identifying rare, previously unmodeled phenomena in LSST’s vast
data volumes.

These research directions are not purely academic exercises; they directly address the technical barriers
that limit the deployment of ML at scale for DESC’s most ambitious analyses. We articulate not only what
needs to be developed, but why these specific advances matter for cosmological inference and how DESC
can contribute to the broader AI research ecosystem by presenting demanding, scientifically motivated
benchmarks.

Section 5: Looking Forward: Foundation models and Agentic AI —While Sections 3 and 4 focus on current
ML applications and their refinement, Section 5 adopts a forward-looking perspective, examining how two
emerging AI paradigms (data foundation models and LLM-based agentic systems) have the potential to
reshape large sections of DESC workflows in ways that go qualitatively beyond incremental improvements
to existing methods.

• Foundation models (FMs), trained at scale on heterogeneous data modalities (images, spectra,
time series, catalogs), offer the promise of reusable representations that can be rapidly fine-tuned or
directly deployed across a wide range of downstream tasks (classification, regression, anomaly de-
tection, simulation-based inference) without retraining from scratch for each application. For DESC,
this paradigm shift could enable unified, survey-scale feature extractors that serve as common back-
bones for weak lensing, photometric redshifts, transient classification, and more, dramatically re-
ducing duplication of effort while ensuring cross-probe consistency. However, realizing this vision
requires careful attention to uncertainty propagation, robustness to distribution shifts, architectural
choices suited to astronomical data, and rigorous, community-governed benchmarking to ensure
that foundation models meet DESC’s validation standards.

• LLM-driven agentic systems are rapidly evolving from research prototypes into tools capable of
orchestrating complex scientific workflows: querying databases, generating and executing code,
synthesizing literature, and autonomously iterating on analyses. These systems offer tantalizing
possibilities for accelerating exploratory research, onboarding new collaboration members, and scal-
ing human oversight across large analysis campaigns. Yet they also introduce new risks: biased
recommendations, irreproducible results, and erosion of scientific understanding if deployed without
governance. Section 5 outlines both the transformative potential and the implementation require-
ments (provenance tracking, human-in-the-loop validation, benchmark design, and clear policies on
data rights and model transparency) necessary to integrate agentic AI into DESC in ways that guar-
antee scientific rigor.
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The forward-looking stance of Section 5 is deliberate: DESC must not only respond to today’s ML methods
but actively shape the trajectory of emerging AI technologies by setting clear scientific requirements, con-
tributing demanding use cases to the broader AI research community, and pioneering governance frame-
works that other collaborations can learn from.

Section 6, 7, 8: Operationalizing AI/ML: Infrastructure, Coordination, and Risk Management —Even the
most sophisticated AI/ML methods will have limited impact if they cannot be reliably deployed, maintained,
and integrated into DESC’s production pipelines. The final sections of this white paper address the oper-
ational foundations required to translate research prototypes into dependable cosmological infrastructure.
Section 6 details the infrastructure requirements across software, computing, and data:

• Software: Establishing a robust, collaboration-endorsed AI software stack (frameworks, experiment
tracking, model registries, continuous integration/continuous deployment for models) that ensures
reproducibility, portability across DESC computing facilities, and long-term sustainability over the
LSST decade. This includes strategies for integrating AI components into DESC analysis pipelines
and for managing the rapidly evolving ecosystem of LLMs and agentic frameworks.

• Computing: Securing the graphics processing unit (GPU) allocations, distributed training ca-
pabilities, and co-located data access necessary for foundation model development, large-scale
simulation-based inference campaigns, and real-time alert stream processing. This involves strate-
gic coordination with national labs such as the Argonne Leadership Computing Facility (ALCF) and
Oak Ridge Leadership Computing Facility (OLCF), emerging initiatives (AmSC, HPDFs), and inter-
national partners (EuroHPC, IDACs).

• Data: Ensuring that LSST data products, multi-survey training datasets, and simulation outputs
are accessible, well-documented, and equipped with the interfaces—e.g., application programming
interfaces (APIs), streaming services, tokenization strategies—required for efficient AI/ML workflows.
This includes establishing shared repositories, benchmark datasets, and provenance standards.

Section 7 broadens the scope to examine opportunities for coordination beyond DESC: with the other Rubin
LSST Science Collaborations, Stage-IV experiments (in particular DESI, 4MOST, Roman, Euclid), AI insti-
tutes (e.g., NSF–Simons institutes, CosmicAI), European networks (e.g., EuCAIF, ELLIS), and the Rubin
alert broker ecosystem. These partnerships offer opportunities for shared training data, cross-survey foun-
dation models, joint benchmark development, and access to specialized compute resources and expertise.
DESC is uniquely positioned to act as both a consumer and a driver of AI methodologies within this broader
ecosystem, articulating the demanding requirements of precision cosmology while contributing validated
methods and datasets that benefit the wider community.

Finally, Section 8 confronts the risks and challenges inherent in DESC’s increasing reliance on AI/ML:
model miscalibration, opaque failure modes, reproducibility challenges, data governance complexities, and
the potential erosion of human scientific understanding. We outline concrete mitigation strategies (validation
protocols, redundancy in critical analyses, provenance tracking, training programs, and governance struc-
tures) that apply the same rigor to AI components as to any other element of the cosmological inference
pipeline.
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Section 9: Conclusion —Viewed as a whole, this paper shows that AI/ML is already central to DESC
science (Section 3), but unlocking its full potential requires targeted methodological research (Section 4),
proactive engagement with emerging technologies (Section 5), and robust operational foundations (Sec-
tion 6–8). The transversality of methods and challenges across DESC working groups demands deliber-
ate coordination to prevent fragmented effort and ensure that best practices, validated tools, and lessons
learned propagate rapidly throughout the collaboration. By articulating this vision (grounded in current
capabilities, guided by research priorities, forward-looking in its engagement with foundation models and
agentic AI, and operationally realistic about infrastructure and risk) DESC can position itself not only to meet
its own science goals but to pioneer robust AI/ML practices for fundamental physics that serve as a model
for the broader community.

AI/ML FOR DESC 17



3. The Current Landscape of ML Across DESC Science

The science goals of DESC place unusually stringent demands on statistical methodology. Extracting
percent-level constraints on dark energy, dark matter, and tests of gravity from Rubin LSST data requires
not only exquisite control of observational systematics, but also analysis pipelines that can efficiently ex-
ploit information distributed across billions of galaxies, multiple probes, and heterogeneous data modalities
(images, catalogs, time series, simulations). While AI (in the sense of LLMs and agents) has not yet signifi-
cantly started to impact DESC, ML is already embedded in many of these workflows and its importance will
only grow as analyses become more ambitious and data volumes increase.

In this section, we survey existing intersections of ML methods with DESC science, organized by applica-
tion area, including photometric redshifts, strong and weak lensing, and galaxy clusters; supernovae and
transients; cosmological theory and simulations; deblending; and shape measurement. Each subsection
highlights both current capabilities and open challenges, to clarify where targeted methodological invest-
ment will yield the most significant scientific returns for DESC.

A note on reading this section: In the subsections that follow, each DESC science application is accom-
panied by a summary box highlighting the ML methodologies it employs and the challenges it faces. As
you read through these applications, pay attention to how often the same methods (SBI, differentiable
programming, NDE) and the same challenges (covariate shifts, uncertainty quantification, scalability, data
sparsity, metrics) recur across seemingly disparate topics. This reveals a fundamental pattern: a small set
of transversal methodologies and challenges cuts across the entirety of DESC’s ML applications, as illus-
trated in Figure 1. This pervasive transversality has direct implications for how DESC should organize its
AI/ML efforts, which we synthesize at the end of this section and develop further in Section 4.

3.1. Photometric redshifts

· Methodology. Gaussian processes, NDE, SOMs, Transformers, Hierarchical Bayes, Emulators,
Neural surrogates, Diffusion models
· Challenges. Covariate shifts, UQ, Scalability, Metrics
· Opportunities. Multi-survey training, simulation infrastructure, hierarchical inference

The inference of photo-zs represents a foundational challenge for LSST, where the vast majority of tens
of billions of detected galaxies will lack spectroscopic redshift measurements due to both observational
time constraints and the intrinsic faintness of the sample. Photometric redshifts are derived by establishing
empirical or physically motivated mappings between broadband photometry (including colors, magnitudes),
morphology, and redshift. This process is fundamentally limited by our incomplete knowledge of galaxy
spectral energy distributions (SEDs), the spatial and temporal variations of stellar populations in galax-
ies, and the nature and distribution of attenuating dust. However, the accuracy and reliability of photo-z
estimation is critical across virtually all extragalactic LSST science cases, including weak gravitational lens-
ing, large-scale structure, galaxy cluster cosmology, and supernova surveys. To achieve the DESC goals for
constraining the dark energy equation of state, calibration of photo-z estimates must reach the 0.002×(1+z)
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level for the first year of LSST data (The LSST Dark Energy Science Collaboration et al. 2018). Achiev-
ing these benchmarks necessitates not only accurate point predictions but also well-calibrated uncertainty
quantification, motivating an emphasis on probabilistic methods. In addition, model benchmarking requires
a unified framework for per-galaxy photo-z algorithms, ensemble calibration algorithms, mock data gen-
eration, and performance evaluation. These tasks are fulfilled by the Redshift Assessment Infrastructure
Layers (RAIL; RAIL Team et al. 2025), a photo-z library developed by LINCC Frameworks and DESC.

Supervised Photo-z Estimation —The empirical approach to photo-z inference is to learn a mapping from
observed broadband photometry or imaging to redshift, leveraging spectroscopic training samples. From
catalog-level photometry, empirical regressors such as random forests in Trees for Photo-z (TPZ; Carrasco
Kind & Brunner 2013), gradient boosting machines (FlexZBoost; Izbicki & Lee 2017; Dalmasso et al. 2020),
and Gaussian processes (GPz; Almosallam et al. 2016) have demonstrated competitive performance by
constructing mappings from color-magnitude space to redshift. Neural networks, including both fully con-
nected and specialized architectures, have proven particularly adept at capturing complex relationships
in high-dimensional photometric data (Collister & Lahav 2004). On the other hand, nearest-neighbor ap-
proaches such as k-nearest neighbors and color-matched nearest-neighbors (kNN and CMNN; Graham
et al. 2018) take the training as a reference sample and compute the average redshift of neighbors of the
target galaxy. In a similar way, directional neighborhood fitting (DNF; De Vicente et al. 2016) performs a
regression on the neighborhood, which allows the construction of a local linear model for each galaxy.
Contemporary approaches have evolved from point estimators to full probabilistic models capable of cap-
turing the full conditional distribution p(z | photometry), with NDE techniques (e.g., PZFlow; Crenshaw et al.
2024) enabling flexible, well-calibrated redshift probability density functions (PDFs) via maximum likelihood
training. Complementing catalog-based methods, image-based inference circumvents the information bot-
tleneck imposed by aperture photometry by operating directly on multi-band pixel data, delegating feature
extraction to deep neural networks that leverage morphology and spatial structure inaccessible to cata-
logs. The Detection, Instance Segmentation, and Classification with Deep Learning (DeepDISC) framework
(Merz et al. 2023, 2025) exemplifies this approach, integrating object detection, segmentation, and redshift
estimation into a unified pipeline using multiscale vision transformers (MViT; Li et al. 2022) as the backbone
feature extractor coupled with mixture density networks for probabilistic PDF estimation. Beyond redshift
estimation, tomographic bin assignment for 3×2pt analyses is itself amenable to supervised learning; the
DESC Tomography Optimization Challenge (Zuntz et al. 2021) benchmarked multiple algorithms for this
task, and subsequent work has shown that neural network classifiers can identify galaxies likely to be cor-
rectly binned, improving cosmological constraints (Moskowitz et al. 2023).
Despite their sophistication, all supervised ML methods remain fundamentally limited by the quality and rep-
resentativeness of their spectroscopic training samples: spectroscopic incompleteness, magnitude-limited
surveys, and selection biases induce systematic offsets and distortions in the learned photo-z mapping,
particularly at faint magnitudes and high redshifts where spectroscopic follow-up is most incomplete (New-
man & Gruen 2022). This represents the main challenge for photo-z today and has motivated dedicated
calibration strategies. A further problem is the “implicit prior” imposed by each photo-z method (Schmidt
et al. 2020). These priors, which have a large impact on photo-z estimates, are opaque and difficult to
quantify, making it difficult to compare and combine photo-z posteriors provided by different methods.

Calibration Strategies to Account for Covariate Shifts —Self-organizing maps (SOMs) have emerged as
the preeminent unsupervised learning technique for diagnosing and mitigating the biases caused by covari-
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ate shifts by performing non-linear dimensionality reduction of photometric feature vectors onto a discrete
two-dimensional grid (Masters et al. 2015). SOM-based calibration approaches, such as those deployed
in Dark Energy Survey (DES) Year 3 (Myles et al. 2021) and Kilo Degree Survey (KiDS) analyses (Wright
et al. 2020a,b, 2025; van den Busch et al. 2022), directly assign photometric galaxies the empirical redshift
distribution of spectroscopic galaxies in their SOM cell while down-weighting or even rejecting regions of
color space poorly represented in the spectroscopic catalog. More sophisticated SOM-guided data aug-
mentation strategies selectively populate under-represented SOM cells with simulated galaxies from mock
catalogs improving ML model performance where spectroscopic coverage is deficient (Moskowitz et al.
2024; Zhang et al. 2025). An alternative approach to SOM for covariate shift mitigation (and without using
data augmentation) is represented by stratification by the propensity score (defined as the probability of a
covariate vector to be admitted as part of the training set) of both training and target data. Within each
propensity score group, supervised photo-z can proceed with any method of choice. This stratified learning
(StratLearn) approach is theoretically guaranteed (under some conditions) to cancel covariate shift (Auten-
rieth et al. 2023). It has demonstrated state-of-the-art performance in the PLAsTiCC (PLAsTiCC team et al.
2018) SN Ia classification challenge, a factor of ∼ 2 improvement in photo-z calibration from the cosmic
shear KiDS+VIKING-450 dataset (Autenrieth et al. 2024) and a reduced fraction of catastrophic errors and
one order of magnitude improvement of the bias for simulated photo-z reconstruction (Moretti et al. 2025).

Hybrid Template-Based Estimators —In contrast to empirical photo-z estimators, a broad class of
“template-based” photo-z estimators (e.g., Brammer et al. 2008; Arnouts & Ilbert 2011) attempt to cir-
cumvent the problem of covariate shift using physical models of galaxy SEDs. These estimators trade the
problem of covariate shift for the problem of model misspecification. Hybrid methods, however, attempt to
combine the strengths of empirical and template-based estimators by deriving SED templates in a physics-
informed, data-driven manner (Budavári et al. 2000; Csabai et al. 2000). These models have been shown
to deliver higher-quality photo-z estimates than traditional template-based estimators while suffering less
from covariate shift than pure empirical methods (Crenshaw & Connolly 2020; Li et al. 2025d). They do not
perform as well in-distribution as pure empirical methods, however, and still rely on spectroscopic calibration
sets. It may be possible to remedy these defects by implementing hybrid, physics-informed models in deep
learning frameworks to enable self-supervised learning without reliance on spectroscopic data sets (Boone
2021).

Population-Level Hierarchical Forward Modeling —Traditional photo-z workflows estimate individual galaxy
redshifts and aggregate these posteriors to derive population-level quantities such as ensemble redshift dis-
tributions n(z) – a computationally expensive bottom-up approach prone to biases when combining noisy
individual posteriors (Leistedt et al. 2016; Malz 2021; Malz & Hogg 2022; Alsing et al. 2023). Population-
level inference inverts this paradigm by directly targeting the population distribution P (θ) over redshift and
physical galaxy parameters (stellar mass, star formation rate, metallicity) as the primary inference objective,
leveraging the collective constraining power of the entire photometric dataset while naturally incorporating
physical priors on galaxy evolution. These methods rely on forward modeling: generating synthetic photom-
etry from physical parameters via stellar population synthesis (SPS; for reviews, see, e.g., Conroy 2013;
Iyer et al. 2026) models and comparing the distribution of model photometry to observed data. Classi-
cal SPS calculations—as implemented by, e.g., Flexible Stellar Population Synthesis (FSPS; Conroy et al.
2009, 2010; Conroy & Gunn 2010) and the prospector model family (Leja et al. 2017; Johnson et al. 2021;
Wang et al. 2023)—are computationally prohibitive for large samples, motivating neural network emula-
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tors like speculator (Alsing et al. 2020) that achieve ∼ 103–104× speedups with negligible accuracy loss.
The pop-cosmos framework (Alsing et al. 2024; Thorp et al. 2024a, 2025b; Deger et al. 2025) exempli-
fies this approach: it defines a probability distribution over a 16-dimensional SPS parameterization using
a score-based diffusion model calibrated on ∼420,000 galaxies from COSMOS2020 (Weaver et al. 2022)
with 26-band photometry spanning deep ultraviolet (UV) to mid-infrared (IR). This model enables direct es-
timation of tomographic redshift distributions, and, when used as a data-driven prior in SED fitting, highly
accurate individual galaxy redshift inference.

Benchmarking and Evaluation Frameworks —As AI methods become increasingly central to cosmological
analyses, it is critical to develop robust frameworks for testing and validation that ensure reproducibility and
enable systematic comparison of different approaches. For this purpose, the DESC has developed RAIL,
an open-source, Python-based framework to support large-scale photometric-redshift workflows for LSST.
RAIL is a library that hosts many per-galaxy algorithms (e.g., FlexZBoost, DNF, PZFlow, DeepDISC), ensem-
ble calibration algorithms, (e.g., self-organizing maps). RAIL also provides comprehensive infrastructure
that (i) supplies a unified API and modular pipeline stages to train, apply, and compare a broad range of
redshift estimators (catalog-based, image-based, probabilistic), (ii) embeds evaluation modules and met-
rics for both individual-galaxy redshift and ensemble PDFs (RAIL Team et al. 2025), (iii) generates realistic
mock data for supervised learning algorithms by applying photometric noise, reference redshift selection,
and error to an input catalog, and (iv) enables data challenges to test the robustness of photo-z estimators
to a wide array of systematic errors. RAIL’s standardized framework facilitates reproducible results and fair
benchmarking across different methods, essential for validating AI techniques in preparation for LSST data.

3.2. Strong Lensing

· Methodology. Gaussian processes, CNNs, RNNs, Transformers, SBI, Diffusion models, VI
· Challenges. Data sparsity, Covariate shifts, UQ
· Opportunities. Multi-survey cross-matching (Roman+LSST+Euclid), population-level inference, au-
tomated discovery, subhalo constraints from anomalous flux ratios

Strong gravitational lensing is a rare astrophysical phenomenon where the light of a distant object, the
source, is deflected by the gravity of an intervening structure, the lens, forming multiple images of the
background source. In galaxy-galaxy strong lensing, both the source and the lens are individual galaxies,
while on larger scales, the lens could range from a group to an entire galaxy cluster. Despite their rarity (a
result of the stringent alignment required between source, lens, and observer), lensed systems are powerful
cosmological probes that can constrain dark energy and probe dark matter on sub-galactic scales. Since
elliptical galaxies dominate the deflector population, strong lenses also enable studies of their mass profiles,
stellar content, and dark matter halos. Furthermore, lensing magnification enables the study of high-redshift
sources, offering insights into early galaxy evolution (Schneider et al. 1992).

LSST will be transformative for strong lensing science. Forecasts predict the discovery of ∼120,000 systems
(Collett 2015), two orders of magnitude more than currently known. This large sample will provide the
statistical power required for precision cosmology: time-delay lenses and large samples of static lenses
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have been shown to enable competitive dark energy measurements (Shajib et al. 2025). The sample will
also include significant numbers of currently rare systems, such as double-source-plane lenses, lensed
supernovae, and cluster-scale lenses with multiple background sources. LSST’s six-filter imaging (see
Section 3.1) will enable photo-z estimation for both lens and source populations, as well as classification of
time-delay lenses.

One particularly powerful application is time-delay cosmography, which uses strongly lensed transients to
measure the Hubble constant (H0) (e.g., TDCOSMO Collaboration et al. 2025). This approach yields a
geometrical measurement independent of both the local distance ladder (e.g., SH0ES; Riess et al. 2022)
and early-universe measurements from the cosmic microwave background (CMB; see, e.g. Planck Collab-
oration et al. 2020). LSST will provide time-domain coverage for ∼100× more systems than current surveys
(Wojtak et al. 2019; Goldstein et al. 2019; Arendse et al. 2024; Erickson et al. 2025a; Abe et al. 2025),
dramatically increasing the sample of lensed supernovae (SNe) and active galactic nuclei (AGN) available
for cosmography. AI/ML models have been proposed for time-delay estimation from light curves, particularly
kernel-based methods (e.g. Cuevas-Tello et al. 2006; Cuevas-Tello et al. 2010; AL Otaibi et al. 2016).

Supervised Detection in the Low Data Regime —Given the rarity of strong lensing events, identifying
them among billions of cutouts is inherently challenging for visual inspection in wide-field surveys. While
early automated detection approaches relied on curvature-based features (Estrada et al. 2007) and arc-
characterizing descriptors (Bom et al. 2012, 2017), the advent of convolutional neural networks (CNNs)
led to state-of-the-art performance in lens finding (Petrillo et al. 2017; Schaefer et al. 2018; Petrillo et al.
2019; Lanusse et al. 2018). Building on this progress, Metcalf et al. (2019) launched a lens-finding chal-
lenge using Bologna Lens Factory simulations based on the Millennium data (Lemson & Virgo Consortium
2006), showing that LSST-like ground-based multi-band images are well suited for this task. A subsequent
Euclid-like challenge produced a winning algorithm combining multi-resolution CNNs (Bom et al. 2022),
later validated on real data by Melo et al. (2025) using Legacy Survey and Hubble Space Telescope (HST )
images to mimic LSST–Euclid synergy. Leveraging multiple networks classifications as ensemble lens clas-
sifiers showed improved results over a single network classifier (e.g., Andika et al. 2023; Schuldt et al.
2023b; Gonzalez et al. 2025a), while Holloway et al. (2024) incorporated citizen science annotations to en-
hance the performance. Because too few real lenses exist for supervised training, realistic mock datasets
are essential. Works such as Petrillo et al. (2017) or Schuldt et al. (2021) proposed simulating only the
lensing effect on real galaxy images, a practice now standard in the ongoing LSST DESC and SLSC chal-
lenge (Bom et al., in prep.). In preparation for LSST, Hyper Suprime-Cam (HSC) data (Aihara et al. 2018;
with similar filters and pixel scale) have been used to develop and compare models (see e.g., Shu et al.
2022; Andika et al. 2023; Cañameras et al. 2024; Jaelani et al. 2024; More et al. 2024). While early efforts
focused on simple CNN or residual network (ResNet) architectures, more advanced architectures such as
vision transformers have also been applied (Gonzalez et al. 2025b). Foundation models such as Zoobot
(Walmsley et al. 2023) have also achieved strong results on Euclid imaging (Euclid Collaboration: Walms-
ley et al. 2025; Euclid Collaboration: Lines et al. 2025), and will soon be adopted for LSST (see Sect. 5.1).
Finally, ML methods are now expanding beyond galaxy-scale lenses to systems involving entire clusters
(Schuldt et al. 2025; Euclid Collaboration: Bazzanini et al. 2025) and galaxy–galaxy lenses within clusters
(Angora et al. 2023).
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Simulation-Based Inference (SBI) —Beyond lens finding, Hezaveh et al. (2017) pioneered the use ma-
chine learning models to predict characteristics of strong lensing systems. Specifically, Hezaveh et al.
(2017) showed that simple CNNs can be used to predict parameters of the lens (Einstein radius, complex
ellipticity, and the coordinates of the center of the lens) from images from HST with a precision compara-
ble to that of traditional methods. Perreault Levasseur et al. (2017) proposed using approximate Bayesian
neural networks (BNNs) to obtain calibrated estimations of the marginal posterior of these lens parameters,
an approach applied to Atacama Large Millimeter Array (ALMA) observations in Morningstar et al. (2018).
Such ML estimates can also be used as starting points for classical model fitting methods (e.g. Euclid Col-
laboration: Busillo et al. 2025), providing significant speedups. Legin et al. (2021, 2023) compared this
approach to neural likeliood estimation (NLE), demonstrating potential for better calibration in 2-stage SBI
methods. In Poh et al. (2025), it was demonstrated that BNNs and neural posterior estimation (NPE) can
be used to infer parameters that describe the lens system even in ground-based DES-like imagining. In
subsequent years, significant progress was made in using HSC images to prepare for LSST (e.g., Pearson
et al. 2019; Schuldt et al. 2021; Gentile et al. 2023; Schuldt et al. 2023a,b; Gawade et al. 2025). Following
earlier work by Park et al. (2021); Wagner-Carena et al. (2021), Erickson et al. (2025b) applied (sequential)
NPE within a hierarchical framework to model strongly lensed quasars, testing on real systems discovered
by DES and followed-up with HST high-resolution imaging, and Venkatraman et al. (2025) applied hierar-
chical NPE modeling to simulated LSST i-band coadds. Ongoing DESC work examines how modeling an
uncertain sample of static galaxy-galaxy lenses with ML enables new cosmological constraints (Holloway et
al. in prep.), leveraging the method demonstrated by Li et al. (2024). And in Jarugula et al. (2024), authors
presented a scalable approach for inferring the dark energy equation-of-state parameter from a population
of strong gravitational lens images using neural ratio estimation (NRE). Filipp et al. (2025) investigated the
robustness of neural ratio and neural posterior estimators to distributional shifts for dark matter substructure
inference from strong lensing, finding that these methods can exhibit significant biases when the test data
deviates from the training distributions. Initial tests of using domain adaptation (Farahani et al. 2021) for im-
proving robustness of CNNs and neural posterior estimators when predicting characteristics of strong lens
systems in the presence of distributional shift were performed in Swierc et al. (2023, 2024) and Agarwal
et al. (2024).

High Dimensional Inverse Problem for Lens Modeling —The task of lens modelling, that is, predicting sur-
face brightness of background sources and density maps of foreground lenses is, in its simplest form, a
non-linear inverse problem involving a handful of parameters (∼ 10 − 20). However, as the quality and
resolution of data increases, such parametric description of lensed object becomes too simplistic, and more
complex parametrization become necessary to avoid biases. An example of such a parametrization that is
particularly well-adapted to ML applications are pixelated images of sources surface brightness and pro-
jected densities of lenses. Traditionally, it has been difficult to characterize appropriate priors analytically on
such high-dimensional spaces (see, e.g., Suyu et al. 2006; Dye & Warren 2005; Birrer et al. 2015; Vegetti
& Koopmans 2009; Nightingale et al. 2018), however, recent advances in high-dimensional inference with
deep learning has made progress on this front possible.
An initial attempt at solving the source reconstruction problem was presented in Morningstar et al. (2019),
and extended in Adam et al. (2023) to enable joint modeling of generalized pixellated lens densities and
sources surface brightness. However, while these models provided high-fidelity maximum a posteriori
(MAP) estimates, they lacked the crucial ability to quantify uncertainties. Approaches based on variational
inference (VI) have also been proposed in Chianese et al. (2020); Karchev et al. (2022b); Mishra-Sharma
& Yang (2022).
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Advances of, e.g., Song & Ermon (2019); Ho et al. (2020); Song et al. (2020, 2021); Yang et al. (2023), have
shown that generative models used as expressive, data-driven priors are a promising alternative to address
this problem. Adam et al. (2022); Karchev et al. (2022a) used score-based models (SBMs) as flexible priors
in an explicit inference framework to produce posterior samples of background galaxy sources. In Barco
et al. (2025b), this method was extended to allow joint sampling the source and lens parameters for smooth,
parametric lenses. Such methods have been shown to alleviate known biases in lens parameters induced
by misspecified traditional priors, and methods have been proposed to empirically adapt initially biased
SBM priors to correct for, e.g., population-level evolution of galaxy morphologies (Barco et al. 2025a), and
to empirically extend misspecified physical models (Payot et al. 2025). More recently, Legin et al. (2025) has
shown that SBM priors can be leveraged in a Gibbs sampling scheme to reanalyze HST data from lenses
observed by Sloan Lens ACS (Advanced Camera for Surveys) Survey (SLACS). Ongoing challenges in-
clude increasing the sampling efficiency of these methods to allow modelling a large fraction of the strong
lenses expected with LSST.

Leveraging LSST time-series data —LSST will generate an overwhelming number of transient alerts, mak-
ing the discovery and characterization of strongly lensed short-lived transients (e.g., supernovae) both diffi-
cult and time-critical. Kernel-based methods and probabilistic machine learning models such as Gaussian
processes will likely play a major role in time-delay inference for lensed quasars (e.g., Cuevas-Tello et al.
2006; Cuevas-Tello et al. 2010; Hojjati & Linder 2014; AL Otaibi et al. 2016; Tak et al. 2017) and supernovae
(e.g., Hayes et al. 2024, 2025) discovered by LSST. Temporal deep learning models will also be essential
in this area. For instance, Morgan et al. (2022) developed DeepZipper, which integrates long short-term
memory (LSTM) networks with CNNs to jointly process temporal and spatial information for identifying
strongly lensed supernovae in time-domain surveys. Bag et al. (2024) developed a model using unresolved
light-curve data from difference imaging, while Bag et al. (2025) extended this to full multi-band time series
with a 2D convolutional LSTM network. Huber & Suyu (2024) instead used an LSTM network to predict
time delays between such transients directly from their light curves, whilst Gonçalves et al. (2025) used an
ensemble of CNNs to directly estimate H0 from time series of lensed supernova images and Campeau-
Poirier et al. (2023) demonstrated the potential of NREs to infer H0 from time delays and lens models.
Beyond short-lived transients, Jiménez-Vicente & Mediavilla (2025) modeled microlensing in lensed quasar
light curves, and Fagin et al. (2024) introduced a latent stochastic differential equation (SDE) framework to
jointly model AGN variability and transfer functions, potentially extendable to lensed AGNs for joint inference
of time delays and disk parameters.

3.3. Weak Lensing

· Methodology. SBI, Neural compression, Differentiable programming, Hierarchical Bayes, Diffusion
models
· Challenges. Covariate shifts, UQ, Scalability
· Opportunities. Multi-resolution joint processing (Roman+LSST), probabilistic deblending, Deep-
DISC instance segmentation, physics-informed priors for galaxy morphology
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As light from background galaxies travels through the Universe, its path is deflected by the gravitational po-
tential of foreground matter, inducing subtle shape distortions of observed galaxies that can be statistically
measured. This effect, referred to as weak gravitational lensing, provides a direct probe of the total matter
distribution in the Universe, making it a powerful tool for constraining cosmological parameters such as the
matter density Ωm, the amplitude of matter fluctuations σ8, and the dark energy equation of state w in a
cold dark matter with cosmological equation of state (wCDM) model. With its unprecedented depth, image
quality, and sky coverage, LSST will provide the most precise mapping of the large-scale structure of the
Universe to date. This level of precision has two key implications: (1) It presents a major opportunity to
refine cosmological constraints, motivating the development of advanced inference methods that can fully
exploit this high-quality data; (2) It demands rigorous control of systematic uncertainties to ensure unbiased
cosmological constraints.

Systematics modeling / mitigation —Systematic errors, such as imperfect shear calibration, photo-z uncer-
tainties, spatially varying selection effects, and point-spread function (PSF) residuals, must be well char-
acterized. To date, the precision of current cosmological surveys has permitted the use of state-of-the-art
prescriptions that capture the dominant effects of these systematics (e.g., Mandelbaum 2018). However,
as forthcoming large-scale structure and weak-lensing data from LSST achieve substantially higher statis-
tical precision, a more accurate and detailed characterization of these systematics will be required, at a
level of complexity that renders purely analytical treatments intractable. ML methods offer a complementary
pathway by learning complex nonlinear mappings from observational features—e.g., properties of individ-
ual galaxies, local image quality metrics, PSF residuals, depth maps, shape measurement parameters—
to the resulting systematic bias or residual error (Tewes et al. 2019; Rezaie et al. 2020; Pujol et al. 2020).
Neural network or other ML algorithms can be trained on simulated or calibration data for which the true
systematic shifts are known, and can then be tuned to predict, flag or correct for the systematic effect when
applied to real survey data (Fluri et al. 2022). In doing so, these methods enable rapid and flexible removal
of systematic contamination from the cosmological signal, thereby yielding a cleaner, more robustly inferred
signal.

Clean catalog construction —Systematics such as Intrinsic Alignment (IA; e.g., Mandelbaum et al. 2006,
2011; Troxel & Ishak 2015; Joachimi et al. 2015) can be mitigated by constructing clean source and/or lens
catalogs from galaxy populations where these effects are known to be negligible. Scalable inference of
galaxy properties that correlate with active galaxy populations (such as specific star formation rate, sSFR)
can enable the construction of IA-mitigated galaxy samples. For instance, machine-learned generative pri-
ors can be leveraged (e.g., pop-cosmos; Alsing et al. 2024; Thorp et al. 2024a, 2025b; Deger et al. 2025)
to estimate per-galaxy sSFR and construct clean catalogs of star-forming galaxies with conservative cuts
based on this parameter. This approach, especially when combined with amortized NPE, is scalable to
LSST-sized datasets and is expected to outperform color-based selections, which are affected by contam-
ination. Moreover, generative models of the galaxy population can be applied in a weak lensing context to
directly infer the redshift distributions of source catalogs subject to tomographic binning and sample selec-
tion criteria, provided that the color-redshift relation is realistic and robust. This provides an alternative to
approaches such as SOM calibration.

Neural Compression and Simulation-Based Inference —Traditional weak-lensing analyses follow a two-
step pipeline: compress high-dimensional shear or convergence fields into summary statistics, then per-
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form Bayesian inference on these summaries to obtain posteriors over cosmological parameters. The mat-
ter power spectrum and shear–shear correlation functions remain workhorse statistics (KiDS-1000 cosmic
shear: Asgari et al. 2021; DES Y3 cosmic shear: Amon et al. 2022; Secco et al. 2022), but in the LSST
era significant non-Gaussian information will become available. This has motivated the use of higher-order
moments such as the bispectrum and trispectrum (e.g., Gatti et al. 2022), as well as peak counts (e.g.,
Marques et al. 2024), persistent homology (Prat et al. 2025), and Minkowski functionals (e.g., Kratochvil
et al. 2012). While powerful, these handcrafted summaries are not guaranteed to capture all cosmological
information. An alternative enabled by ML is to train neural networks that compress the maps directly into
low-dimensional summaries. Several strategies have been explored in the weak lensing literature for train-
ing such networks (see Lanzieri et al. 2025, for a comparison); among these, information-theoretic criteria
(such as those used in Information-Maximizing Neural Networks (IMNNs; Charnock et al. 2018; Makinen
et al. 2021) and Variational Mutual Information Maximization (VMIM; Jeffrey et al. 2021)) can yield sum-
maries that closely approximate sufficient statistics, achieving near-optimal compression. Hybrid methods
that combine physics-based summaries (e.g., power spectra) with learned summaries can leverage the
strengths of both (Makinen et al. 2024). Because the likelihood of these learned summaries is unknown,
NDE techniques such as normalizing flows are then used to approximate the posterior within a SBI frame-
work (Alsing et al. 2019). This strategy was first demonstrated on survey data in Jeffrey et al. (2021) and
subsequently applied to recent surveys (e.g., Jeffrey et al. 2025; von Wietersheim-Kramsta et al. 2025),
with Jeffrey et al. (2025) reporting more than a factor of two improvement in dark energy parameter preci-
sion compared to power spectrum inference. However, the practical limit to SBI is not the ability to extract
information from the data through learned summaries, but rather the difficulty of producing simulations re-
alistic enough to be compared to observations without incurring biases from model misspecification. In
addition, neural summaries are notoriously difficult to interrogate: monitoring them for covariate shifts, un-
modeled systematics, and failures in specific regions of the data space is challenging, thereby complicating
the construction of robust null tests and diagnostic pipelines. That said, posterior predictive checks against
conventional summary statistics (e.g., the power spectrum or higher-order moments) can help detect some
forms of model misspecification, though they are not guaranteed to catch all issues.

Hierarchical Bayesian Field-Level Inference —With the advent of GPU-accelerated probabilistic program-
ming, it has become feasible to model the full weak-lensing field in a hierarchical framework that links
Gaussian initial conditions of the matter density to observed shear maps through an explicit forward simula-
tion model. Proof-of-concept studies have demonstrated this approach in simplified weak-lensing settings
(e.g., Porqueres et al. 2023), showing substantial gains in constraining power relative to power-spectrum
analyses. DESC members have contributed key building blocks for such end-to-end pipelines, including
differentiable lensing lightcone constructions (Lanzieri et al. 2023) and accurate, differentiable ray-tracing
schemes (Zhou et al. 2024b). However, scaling these methods to a full LSST analysis remains extremely
challenging: the survey volume and the resolution required for the forward model place stringent demands
on memory, compute, and algorithmic efficiency. Ongoing work aims at lifting this bottleneck through dis-
tributed simulations across multiple GPUs (Kabalan & Lanusse 2025). In parallel with full forward modeling
of the large-scale structure, DESC members have also explored map-based hierarchical inference using
lognormal fields (Boruah et al. 2022; Zhou et al. 2024a), which is far less computationally demanding but
whose ultimate accuracy is constrained by the limitations of the lognormal approximation. As an alternative
approach, DESC members have proposed using diffusion models to learn the forward model of the den-
sity field implicitly from simulations and combine this learned prior with an explicit likelihood to constrain
observed shear data (Remy et al. 2023), enabling fast reconstruction of high-fidelity mass maps.
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3.4. Galaxy Clusters

· Methodology. SBI, Object detection, CNNs, Hierarchical Bayes
· Challenges. Covariate shifts, UQ, Scalability
· Opportunities. Combination of imaging and catalog data, Hierarchical Modeling

Galaxy clusters trace the most massive peaks of the matter density field and form relatively late in cos-
mic history, making their abundance and internal properties highly sensitive to the growth of structure
and to dark energy. Cosmological constraints from clusters have traditionally relied on measurements
of the cluster mass function and its redshift evolution, anchored by calibrated relations between mass
and observable proxies. ML methods are now entering this pipeline at multiple stages (cluster finding,
mass–observable calibration, and population-level inference) offering new ways to combine imaging, cata-
log, and multi-wavelength data while retaining control over systematics and uncertainties.

Cluster Finding from Images and Catalogs —The first step in cluster cosmology is robust identification
of cluster candidates. Non-ML algorithms, such as Red-sequence Matched-filter Probabilistic Percolation
(RedMaPPer; Rykoff et al. 2014, 2016), the Wavelet Z-Photometric (WaZP) cluster finder (Aguena et al.
2021a), and the Euclid cluster finders AMICO and PZWAV (Euclid Collaboration: Adam et al. 2019), have
been widely used to identify optically selected clusters in galaxy catalogs. In parallel, deep-learning–based
cluster finders have emerged in the Sunyaev–Zeldovich (SZ; e.g., Bonjean 2020; Lin et al. 2021; Hurier
et al. 2021; Meshcheryakov et al. 2022) and optical domains (Chan & Stott 2019; Grishin et al. 2023,
2025; Tian et al. 2025). A key advantage of these approaches is that they can operate directly on images,
rather than on pre-processed catalogs, and thus potentially exploit features (e.g., diffuse emission, subtle
color–magnitude structure, environment) that are not captured in standard catalog-level summaries. For
example, a You Only Look Once (YOLO; Redmon et al. 2015; Redmon & Farhadi 2016, 2018) architecture
trained on images centered on SDSS RedMaPPer clusters was shown to recover not only the training
sample but also previously missed systems that were later confirmed in external X-ray catalogs (Grishin
et al. 2023). Recent DESC work applied YOLO-CL to DC2 simulations (Grishin et al. 2025), training on
both observed SDSS RedMaPPer clusters and simulated massive halos. While the model performs well on
images centered on known clusters, blind application to DC2 as a survey shows degraded completeness
and purity, highlighting the need for further development and architectural updates, including modern YOLO
variants and transformers (Tran et al., in prep.), before deployment on LSST.

Mass-Observable Relations and Weak-Lensing Mass Calibration —Cosmological analyses require accu-
rate and precise relations between cluster mass and observables (richness, SZ signal, X-ray luminosi-
ty/temperature, velocity dispersion). Deep neural networks are being explored as flexible mass estimators
across multiple wavebands, including X-ray signatures (Ntampaka et al. 2019; Krippendorf et al. 2024; Iqbal
et al. 2025), the dynamics of member galaxies (Ho et al. 2019, 2021, 2022; Wang & Thiele 2025), and SZ
measurements (de Andres et al. 2022). For LSST, photometric galaxy data contribute primarily through
weak-lensing mass estimates that anchor mass–observable relations. The DESC Cluster Lens Mass Mod-
eling tool (CLMM; Aguena et al. 2021b) currently infers weak-lensing masses from radial shear profiles
using traditional likelihoods and Markov chain Monte Carlo (MCMC), on the assumption of parametric mass
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models such as Navarro–Frenk–White (NFW; Navarro et al. 1997). Ongoing work within DESC explores
alternative SBI approaches at this level, which can in principle incorporate more realistic shear profiles,
complex noise, and selection effects without requiring an explicit closed-form likelihood.

Simulation-Based Inference for Cluster Cosmology —SBI provides a computationally efficient method for
deriving posteriors for cluster- and population-level parameters directly from simulated data vectors. This
is particularly attractive for analyses that must jointly model individual clusters and the cluster population
via hierarchical frameworks, where traditional likelihood-based methods become increasingly costly and
brittle as the parameter space and model complexity grow. Ongoing work within DESC indicates that SBI
can recover cluster weak-lensing mass posteriors consistent with those from MCMC, provided that model
misspecification is not worse than in the explicit-likelihood case (Gill et al., in prep.). In addition, SBI has
been shown to derive relevant constraints directly from cluster counts (Reza et al. 2022, 2024; Zubeldia
et al. 2025), and this approach is now being developed on DESC simulations as an alternative, simulation-
native pathway to cluster cosmology that can be integrated into the DESC Cluster Cosmology Pipeline.
Compared with Stage-III experiments, DESC cluster analyses will require richer astrophysical modeling
and the exploration of larger parameter spaces; SBI offers the algorithmic flexibility and, in many regimes,
the computational efficiency required to meet these demands.

3.5. Supernova Cosmology and Transients

· Methodology. Hierarchical Bayes, RNNs, Transformers, Active learning, Ensembles, SBI, Anomaly
detection, VAEs, Gaussian processes
· Challenges. Covariate shifts, Data sparsity, Scalability, UQ
· Opportunities. PLAsTiCC/ELAsTiCC simulation infrastructure, DESC leadership in alert broker
integration (ALERCE, Fink, ANTARES)

LSST is expected to detect ∼10 million transient and variable objects each night, a thousand-fold increase
over current surveys. The sheer volume and cadence of detections renders traditional spectroscopic clas-
sification infeasible for most events. This presents a major bottleneck to the identification of pure SN Ia
samples for cosmological distance measurements, and to constraining the explosion physics of populations
of rare and novel phenomena for the first time. To achieve reliable cosmological constraints and meet DESC
goals of reducing the systematic uncertainties from light curve modeling below 3% of those obtained from
SALT2 (Guy et al. 2007), analysis techniques demand well-calibrated uncertainty quantification, adaptive
and scalable performance, and robustness to covariate shifts and data corruption.

Spectrophotometric Modeling —SNe Ia are broadly homogeneous and viable standard candles, but diver-
sity in their spectro-temporal properties and persistent host-dependent effects (Sullivan et al. 2006, 2010;
Lampeitl et al. 2010; Kelly et al. 2010; Hayden et al. 2013) still limit standardization precision. Modern ML
approaches to standardization now focus on data-driven, differentiable, and multi-modal models rather than
hand-engineered linear corrections. Already progress in these directions can be seen in modeling using
probabilistic auto-encoders (Stein et al. 2022) and variational autoencoders (VAEs; e.g., ParSNIP Boone
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2021), that predict time-evolving SEDs from light curves, and use a differentiable forward model to compare
in observation space. High quality, well-calibrated data has been instrumental in these endeavors, which
can be augmented by the LSST/Rubin samples; however, strategies that account for the shifts induced by
calibration errors must still be investigated.

More recent efforts involve ML models as emulators (e.g. Chen et al. 2020; Kerzendorf et al. 2021; Magee
et al. 2024) for radiative transfer codes such as TARDIS (Kerzendorf & Sim 2014), that can be used to infer
physical parameters such as the total luminosity, nickel mass, the composition and the asymmetry of the
ejecta given multi-modal inputs such as light curve, time-series spectroscopy, and Rubin and high-resolution
space-based imaging (e.g. from the ESA Euclid mission and the Nancy Grace Roman Space Telescope).
These physically motivated emulators are also capable of several tasks that would have previously required
individual specialized models. These include predicting the future evolution of SNe of all types, classifying
spectra while being agnostic to the imbalance in extant training samples, and can help distinguish SN Ia
from impostors that might otherwise contaminate the cosmological sample, as well as actively schedule
follow-up spectroscopy.

Photometric Classification —The methodological evolution of photometric classifiers from feature-based
approaches (e.g. Narayan et al. 2018) to end-to-end learning has been driven by the challenge of process-
ing irregular, heteroskedastic observations: SNmachine (Lochner et al. 2016) leveraged a range of feature
sets, from physics-based through to non-parametric approaches, coupled with a variety of traditional ML
techniques to achieve high classification accuracy; SCONE’s Gaussian process interpolation (Qu et al. 2021)
creates regular 2D representations from sparse observations (see also Avocado; Boone 2019); while trans-
former architectures (Pimentel et al. 2023; Allam & McEwen 2024; Cabrera-Vives et al. 2024) leverage
self-attention mechanisms to handle missing data naturally. Hybrid, physics-informed approaches have
also been explored to extract latent features from light curves using generative modeling, which are then
used for classification (Boone 2021). Classification tools have already proven their utility in LSST survey
optimization for supernova metrics, with realistic LSST survey cadences (e.g., SNMachine, Alves et al. 2022,
2023).

DES pioneered the use of neural networks for photometric classification of SNe Ia for cosmological analysis
(Möller & de Boissière 2020; Qu et al. 2021; Möller et al. 2022; Vincenzi et al. 2023; DES Collaboration et al.
2024). Propagating the prediction uncertainties from these models through to cosmological constraints
remains an open problem. SuperNNova (Möller & de Boissière 2020) addresses the former with a recurrent
neural network (RNN) providing calibrated probabilities essential for contamination modeling in dark energy
constraints (Vincenzi et al. 2023). In DES, BNNs and ensemble methods were also tested (Möller et al.
2024); for DESC, we can advance fully Bayesian approaches to photometric classification for LSST.

Forward Modeling of the Time-Domain Landscape —Observational modeling led by DESC has catalyzed
the development of neural approaches to photometric classification. PLAsTiCC (PLAsTiCC team et al.
2018; Hložek et al. 2023) provided 3.49M test light curves across 18 transient classes using simulations
from the Supernova Analysis package (SNANA; Kessler et al. 2009) with cadences and realistic observing
conditions from the LSST Operations Simulator (OpSim; Delgado et al. 2014). The challenge established
weighted logarithmic loss metrics prioritizing SNe Ia and kilonovae (KNe) for DESC science goals (Malz
et al. 2019), with winning solutions employing gradient boosting and ensemble neural networks requiring

AI/ML FOR DESC 29

https://github.com/LSSTDESC/snmachine
https://github.com/helenqu/scone
https://github.com/kboone/avocado
https://github.com/LSSTDESC/snmachine
https://github.com/supernnova/SuperNNova


engineered features (Boone 2019; Hložek et al. 2023). The dataset remains a foundational benchmark for
time-series representation learning in astrophysics years after its development (Fraga et al. 2024; Masson
& Bregeon 2024; Cádiz-Leyton et al. 2025b,a; Zivanovic et al. 2025). Building on PLAsTiCC, ELAsTiCC
(Narayan & ELAsTiCC Team 2023; Knop & ELAsTiCC Team 2023) stress-tested end-to-end broker infras-
tructure with ∼50M alerts streamed in real-time to seven community brokers from September 2022–January
2023. DESC remains the only Rubin Science Collaboration to have tested the alert infrastructure from end-
to-end on this scale, as it is critical for deploying AI models live, to support online learning and other tasks
to optimize the scientific return from Rubin.

Similar to ELAsTiCC and PLAsTiCC, S/N Analysis of Simulated SpectrA for Rubin trAnsientS (SAS-
SAFRAS) is a novel dataset of simulated LSST spectroscopic follow-up with 2.1M spectra across 14 tran-
sient types and three telescopes – Gemini, the Southern Astrophysical Research Telescope (SOAR), and
4MOST – using SNANA simulations with realistic noise from each of the three telescopes. These simula-
tions contain an even distribution of spectra per class and have a wide range of redshift distribution between
0.023–1, minimizing the bias inherent from uneven distribution of spectra seen in real data. One group at
NSF–Simons AI Institute for the Sky (SkAI) is currently utilizing SASSAFRAS to train a spectroscopic clas-
sifier and then transfer learn with real data to create a state of the art classifier. Spectroscopic classifiers
trained on SASSAFRAS will be essential for confirming transient labels for active learning algorithms as
outlined below.

Online Learning for Spectroscopic Optimization —While archival photometric classification will suffice for
the bulk of LSST cosmology analyses, inference over partially obtained data remains crucial for prioritizing
spectroscopic targeting before an event has ended. Gated recurrent unit (GRU)-based recurrent and con-
volutional neural networks have successfully classified partial-phase synthetic light curves (Muthukrishna
et al. 2019; Qu et al. 2021; Gagliano et al. 2023; Shah et al. 2025), but performance on observed data
remains modest. Transformer-based methods are being increasingly used (Cabrera-Vives et al. 2024), with
synthetic pre-training playing a growing role in bridging the simulation gap (Gupta et al. 2025). Within DESC,
host-galaxy correlations have been shown to improve early classification (Gagliano et al. 2021); this has
driven data-driven modeling of host-galaxy correlations for the ELAsTiCC challenge (Lokken et al. 2023),
although spurious host-galaxy associations and the small postage stamps of the field contained within the
LSST alert packets may limit utility of real-time inference using these data.

Beyond real-time classification, active learning faces unique astronomical challenges: objects must be
selected for spectroscopic follow-up before informative light curve data are obtained, the untargeted pop-
ulation is substantially dimmer than the spectroscopically confirmed sample used in training, and labeling
costs vary dramatically with object brightness and sky position. The Recommendation System for Spec-
troscopic followup (RESSPECT)5, an initial approach to active learning for transient science, implements
uncertainty sampling with random forest classifiers on Bazin (Bazin et al. 2011) parametric features, but
requires a minimum of five observations per filter, limiting early-time selection (Kennamer et al. 2020). More
recent implementations have refined active learning for early-time SN Ia identification, demonstrating effec-
tive follow-up optimization with simulations (Ishida et al. 2019), real-data a posteriori (Leoni et al. 2022) and
real-time observational campaigns (Möller et al. 2025), the latter revealing the need for training sets contain-

5 https://resspect.readthedocs.io/en/latest/
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ing events beyond supernovae. Astronomaly (Lochner & Bassett 2021) introduces personalized anomaly
detection by combining isolation forests with human relevance scoring, addressing the fundamental subjec-
tivity of an anomaly label. The approach has been shown to double the rate of anomaly discovery in radio
transients (Andersson et al. 2025). However, active learning remains fundamentally limited by the lack of
an informative initial training set, such that early random sampling can produce biased or unrepresentative
data that propagates through subsequent iterations of learning. This is a fundamental challenge for novelty
detection in LSST data.

Prompt Processing with the Transient Alert Brokers —The seven Rubin Community Brokers implement di-
verse classification pipelines. Automatic Learning for the Rapid Classification of Events (ALeRCE) employs
a CNN for top-level classification from alert postage stamps (Carrasco-Davis et al. 2021), and a hierarchical
random forest applied to photometric features for classification along a 15-class taxonomy (Sánchez-Sáez
et al. 2021). Alert Management, Photometry, and Evaluation of Light curves (AMPEL) uses a four-tier sys-
tem with predominantly gradient-boosted random forests (Nordin et al. 2025), and Fink deploys multiple
classifiers for early and late-time classification (Fraga et al. 2024; Leoni et al. 2022; Möller & de Boissière
2020; Möller et al. 2025; Möller et al. 2021). Arizona–NOIRLab Temporal Analysis and Response to Events
System (ANTARES) employs multi-stage filtering with community-contributed Python classes for tagging
sources (Narayan et al. 2018), while Lasair integrates a boosted decision tree classifier from host galaxy
properties (Smith et al. 2020) with multi-order coverage (MOC)-based watchmaps for coordination with
4MOST’s Time Domain Extragalactic Survey (TiDES), which will be providing 35,000 transient spectra for
SN Ia cosmology (Williams et al. 2024). These brokers have demonstrated sub-second latency in process-
ing millions of alerts during the ELAsTiCC campaign, with classification probabilities reported via standard-
ized Avro schemas that enable systematic evaluation of heterogeneous ML architectures. DESC members
are involved in all seven Rubin Community Brokers, offering substantial potential for shared software infras-
tructure for processing the LSST alert stream.

Cosmological Inference using Type Ia Supernovae —Hierarchical Bayesian models have been applied
to SN Ia for various goals, including cosmological inference (e.g., March et al. 2011; Shariff et al. 2016;
Rubin et al. 2015, 2025; Feeney et al. 2018), constructing empirical SED models (BayeSN; Mandel et al.
2009, 2011, 2022; Thorp et al. 2021; Ward et al. 2023; Grayling et al. 2024; Uzsoy et al. 2024), modeling
intrinsic colors and dust extinction (Mandel et al. 2017; Thorp & Mandel 2022; Thorp et al. 2024b), handling
uncertain photometric classifications (Kunz et al. 2007; Hlozek et al. 2012) and redshifts (Roberts et al.
2017), and modeling the spectrophotometric standards used in photometric calibration (Boyd et al. 2025;
Popovic et al. 2025). However, in the LSST era such models will need to incorporate complex effects
that cannot easily be treated analytically; e.g., selection effects, photometric classification and photometric
redshifts. Work is ongoing to enhance our statistical models using SBI, to leverage the flexibility of neural
networks to capture these complex effects (e.g., Boyd et al. 2024; Karchev et al. 2024, 2025). SBI will
enable scalable and principled statistical inference of cosmological parameters with LSST.

3.6. Theory and Modeling
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· Methodology. Emulators, Gaussian processes, Neural surrogates, Differentiable programming,
Symbolic regression, SBI
· Challenges. Covariate shifts, Scalability
· Opportunities. Flexible emulation frameworks, model selection and hypothesis testing, efficient
construction of realistic mock datasets, gradient-based sampling.

The role of theory and modeling within DESC is to provide the essential bridge between cosmological pa-
rameters and the statistical observables derived from LSST data. Accurate theoretical models are required
to translate measured galaxy shapes, positions, and fluxes into constraints on dark energy, dark matter, and
gravity. This entails constructing predictive models of large-scale structure, galaxy bias, baryonic physics,
and lensing observables that can be robustly compared with data while marginalizing over astrophysical
and observational systematics. As the scale and precision of LSST data demand modeling at unprece-
dented accuracy and speed, ML-based emulators, differentiable theory libraries, and SBI approaches are
increasingly central to this effort, enabling fast and robust connections between data and theory.

Fast Surrogates for Cosmological Likelihoods —Emulation and related methods for creating fast-surrogate
models using ML and AI will be of crucial importance in accelerating inference pipelines for cosmological
analyses in DESC. Emulation is an indispensable tool for integrating aspects of modeling which by nature
require simulation too slow to ever consider incorporating directly in sampling (e.g., those requiring N -body
or hydrodynamical simulations). At the same time, even for aspects of modeling which are more moderate
in evaluation cost (seconds rather than many hours), emulation allows individual likelihood evaluations to be
dramatically accelerated. This is one of the key ways we can make computationally feasible the sampling
in high-dimensional parameter spaces which will be required for DESC analyses.

Work on these emulation techniques has included directly building emulation tools, particularly outside of
wCDM models (Ramachandra et al. 2021), emulating intrinsic alignment correlations (Pandya et al. 2025b),
as well as using emulators to efficiently evaluate modeling choices for LSST data (Boruah et al. 2024).
The DESC theoretical modeling package pyCCL (Chisari et al. 2019) natively supports key matter-power-
spectrum emulation tools baccoemu (Aricò et al. 2021) and CosmicEmu (Lawrence et al. 2017). However,
developing frameworks for DESC to analyze models outside wCDM in the nonlinear regime of LSST data
remains a challenge that needs to be addressed (Ishak et al. 2019), for which AI can play a major role.

Looking to the future, DESC would benefit from developing mechanisms to enable emulation that has more
flexibility with respect to modeling components. Our current methods of building a single emulator from
scratch per modeling set-up is high cost (computationally and in terms of person power). This does not
scale well for enabling adaptation to new systematics modeling or inference in models outside of wCDM.
Considering approaches which use meta-learning (e.g., MacMahon-Gellér et al. 2025) or which are philo-
sophically aligned with foundation models would be of value.

Another area of growth where fast emulators can make major impact is in model selection and hypothesis
testing of beyond-wCDM models. Instead of being limited by the cost of theoretical model evaluations, future
analyses will be constrained by how efficiently inference pipelines can navigate and compare competing
cosmological models. Integrating these emulators within agentic AI systems (Section 5.2)—which can
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autonomously refine training data, adapt inference strategies, leverage tools for evidence computation and
simulation-based inference, and even propose new model extensions—will further accelerate discovery.
For DESC, this synergy will transform the capacity to test gravity, dark energy, and dark-sector interactions,
turning high-quality data into a powerful engine for identifying new physics.

Differentiable Programming for Accelerated Sampling —Traditional cosmological inference pipelines often
rely on computationally expensive numerical methods such as the Code for Anisotropies in the Microwave
Background (CAMB; Lewis et al. 2000) or HaloFit (Smith et al. 2003; Takahashi et al. 2012), limiting the use
of gradient-based sampling methods. Differentiable cosmological codes address this by enabling efficient
computation of gradients with respect to model parameters, unlocking samplers such as Hamiltonian Monte
Carlo (HMC) and the No U-Turn Sampler (NUTS; Hoffman & Gelman 2014).

The jax-cosmo library (Campagne et al. 2023) provides a differentiable and hardware-accelerated frame-
work for cosmological computations. With a NumPy-compatible API and close integration with tools such
as NumPyro (Phan et al. 2019) and JAXopt (Blondel et al. 2021), jax-cosmo offers a practical foundation
for building scalable, fully differentiable cosmological models. Piras & Spurio Mancini (2023) combined
jax-cosmo with neural-network emulators in CosmoPower-JAX, enabling high-dimensional Bayesian infer-
ence through automatic differentiation and GPU acceleration. The halox package (Kéruzoré 2025) uses
jax-cosmo for cosmological calculations such as power spectra and distance measures in its modeling of
dark-matter halo statistics (such as halo mass function and halo bias). Sui et al. (2025) used jax-cosmo to
test a differentiable Fisher-information approach based on score matching. Recently too, Bartlett & Pandey
(2025) have developed a symbolic emulator that leverages genetic programming-based symbolic regres-
sion to derive compact, analytic expressions for cosmological observables, including the radial comoving
distance, linear growth factor, and nonlinear matter power spectrum.

3.7. Cosmological and Survey Simulations

· Methodology. Emulators, Diffusion models, Differentiable programming, SBI, GNNs
· Challenges. Covariate shifts, Scalability, Metrics
· Opportunities. Joint modeling of galaxies and environments, inference at catalog and field level,
modular components for DESC simulators, survey-scale generative models, survey design, system-
atics mitigation, pipeline stress tests.

Cosmological simulations are a fundamental tool not only for validating analysis pipelines but also, increas-
ingly, for providing “theory” samples for SBI frameworks. Producing mock survey data at the scale and accu-
racy required for LSST science remains a major challenge, which ML can help address by emulating expen-
sive numerical predictions and by providing data-driven models of otherwise poorly constrained aspects of
the galaxy population. Neural emulators have long been used as fast surrogates for non-differentiable com-
ponents of cosmological forward models, e.g., summary statistics of N -body simulations as in CosmicEmu

(Heitmann et al. 2016; Moran et al. 2023), Aemulus (DeRose et al. 2019), CosmoPower-JAX (Piras & Spu-
rio Mancini 2023), or 21cmEMU (Breitman et al. 2024), and more recently for accelerating SPS calculations
via models such as speculator and ProMage (Alsing et al. 2020; Tortorelli et al. 2025). Extending these
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approaches to additional components of the simulation pipeline holds the promise of greatly increasing the
dynamical range, realism, and flexibility of LSST mock catalogs at manageable computational cost.

Population-Level Generative Models for Realistic Galaxy Catalogs —Diffusion-based generative models
operating in the space of physical galaxy parameters provide a powerful route to building realistic mock
catalogs that remain anchored in deep-field observations. The pop-cosmos framework (Alsing et al. 2024;
Thorp et al. 2025b; Deger et al. 2025) defines a score-based diffusion model over a high-dimensional
SPS parameterization—star formation history (SFH), metallicity, dust, nebular emission, etc.—calibrated on
∼420,000 galaxies from COSMOS2020 (Weaver et al. 2022) spanning 26 bands from UV to mid-IR. Rather
than directly emulating observed fluxes, pop-cosmos learns a data-driven prior p(θSPS, z) over physical pa-
rameters and redshift that reproduces the joint distribution of observed photometry. This model encodes
realistic priors on star-formation histories over cosmic time, and learns the evolution of the star-forming se-
quence. When coupled to survey-specific selection functions and noise models, pop-cosmos can therefore
generate realistic mock galaxy catalogs that inherit both empirical constraints from deep multi-wavelength
data and the flexibility of generative modeling.

Differentiable Empirical Galaxy–Halo Forward Modeling —Complementary to purely catalog-level gener-
ative approaches, differentiable galaxy–halo forward models seek to describe galaxy populations as con-
ditional generative processes on top of dark-matter structure. The Diffsky framework (OpenUniverse
et al. 2025) rebuilds the traditional “halo → SFH → SED” chain using differentiable, physically interpretable
blocks. Diffmah (Hearin et al. 2021) provides a JAX-based, few-parameter model of halo mass assem-
bly Mhalo(t), replacing noisy merger trees with smooth, analytic, differentiable growth histories. On top of
this, Diffstar (Alarcon et al. 2023) models in situ star-formation histories with a small set of parameters
(e.g., star-formation efficiency, gas-consumption timescale, quenching time), while DiffstarPop (Alarcon
et al. 2025) lifts this to the population level by learning the statistical link between SFH parameters and
halo assembly across suites of reference simulations. Finally, Differentiable Stellar Population Synthe-
sis (DSPS; Hearin et al. 2023) maps these SFHs and associated metallicity/dust parameters to SEDs and
photometry entirely within JAX. Together, Diffmah + Diffstar/DiffstarPop + DSPS replace merger trees,
non-differentiable semi-analytic recipes, and black-box SPS calls with a modular, probabilistic, fully differen-
tiable stack whose low-dimensional, physically meaningful parameters can be calibrated and explored with
gradient-based methods and SBI, while still generating large, realistic synthetic catalogs. AI-based models
are in development to generate multiband galaxy images from these synthetic catalogs, conditioned on the
parameters of the Diffsky suite.

Differentiable Cosmological N-body Solvers —Recent years have seen the emergence of particle–mesh
N -body solvers implemented in modern, GPU-accelerated, deep-learning frameworks that support auto-
matic differentiation (e.g., Modi et al. 2021; Li et al. 2022; List et al. 2025; Lanusse et al. 2025). Automatic
differentiation enables hierarchical Bayesian inference directly over forward simulations of large-scale struc-
ture, opening a path toward full-field inference and near-optimal extraction of cosmological information. The
main obstacles to deploying these methods at LSST scale are the computational and engineering demands
of simulating survey-sized volumes in a differentiable way. Computing derivatives through the simulation
implies non-trivial memory costs that are difficult to satisfy under the constraints of GPU accelerators. Sev-
eral complementary strategies are being developed to address this challenge, including multi-node domain
decomposition for distributed simulations (Kabalan & Lanusse 2025), techniques to reduce the memory
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cost of gradient evaluation (Li et al. 2024), and improved time integrators that achieve a given accuracy with
fewer time steps (Rampf et al. 2025). Beyond enabling full-field inference, differentiable simulations also
enable the combination of physics-based solvers with learned components, yielding hybrid schemes that
can improve the speed and accuracy of particle–mesh simulations (Lanzieri et al. 2023; Payot et al. 2023).

Hydrodynamical-Simulation-Based Mappings of Galaxy Properties —A complementary strategy is to treat
state-of-the-art hydrodynamical simulations as high-fidelity “teachers” and use ML to distill their complex,
small-scale physics into fast, effective models defined directly on dark-matter fields. Rather than specify-
ing parametric galaxy–halo or SPS models, these approaches learn mappings from halo or large-scale-
structure descriptors to galaxy properties as realized in the simulations. Recent work on IA illustrates this
paradigm. A traditional approach, followed by Van Alfen et al. (2024) is to develop an empirical IA model
constrained by hydrodynamical simulations within a flexible halo occupancy distribution (HOD)-like frame-
work. A more ML-oriented approach is to learn an end-to-end emulator of galaxy properties. Jagvaral
et al. (2025) introduce a geometric deep-learning approach in which galaxy shapes and orientations from
IllustrisTNG (Nelson et al. 2019) are modeled using E(3)-equivariant graph neural networks defined on the
cosmic web, capturing the conditional distribution of shapes and orientations given halo mass, environ-
ment, and tidal field. This yields a fast, simulation-calibrated surrogate that reproduces intrinsic-alignment
statistics at the percent level, enabling embedding of hydro-level realism into DESC mock catalogs without
rerunning computationally expensive hydrodynamical simulations.

3.8. Object Classification

· Methodology. Ensembles, GNNs, Active learning, Transformers, Self-supervised learning
· Challenges. Covariate shifts, Data sparsity, Scalability, UQ
· Opportunities. Multi-survey training, Data-driven Priors, Generative Models

The classification of astronomical objects is an area that has seen a surge in ML and AI applications over
the past decade. In regards to DESC science, we call out three potentially relevant areas: the detection
and removal of bogus/non-astrophysical sources, the classification of galaxy types, and star/galaxy sepa-
ration. While the first area is critical for minimizing the pollution of source catalogs, it falls mostly under the
responsibility of the Rubin Project’s data management team and is addressed at the instrument signature
removal stage of the Rubin pipeline (Bosch et al. 2018). Galaxy type classification has been a strong ap-
plication of citizen science and AI/ML applications, with an increasing demand and opportunity expected
from the depth that will be achieved by Rubin (e.g., Cao et al. 2024). However, galaxy type classification
is not currently identified as a main concern for DESC beyond what is necessary to ensure a clean sam-
ple of galaxies for cosmological analyses (e.g., identifying merging galaxies that could confuse some of
cosmological measurements).

On the other hand, star/galaxy separation is expected to be crucial to DESC science, as it may influence
catalog completeness, weak-lensing shear estimation, galaxy clustering estimates, calibration of photomet-
ric redshifts, and object selection for spectroscopy. At the imaging depth of LSST, galaxies vastly outnumber
stars, and a nontrivial fraction of those galaxies are compact and blue, making them morphologically and
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photometrically similar to point sources, especially under variable seeing and in crowded fields (Fadely et al.
2012).

The nominal approach to star/galaxy separation implemented by the Rubin Science Pipeline uses a cut-
based approach based on object “extendedness”, which is constructed from a comparison of the PSF- and
model-based measurements (see Slater et al. 2020, and references therein). This classifier performs well
at bright magnitudes but struggles at the faint end, leading to either very large contamination in the faint star
sample (i.e., orders of magnitude more galaxies than stars) or significant (i.e., nearly total) incompleteness
for stars. Prior work from DESC members, working on precursor surveys like DES, improved on simple
cut-based analyses by using feature-based machine learning—decision trees, random forests, boosted
ensembles, and shallow neural networks trained on catalog-level features such as colors, shape moments,
and PSF–model magnitude differences (e.g., Soumagnac et al. 2015; Sevilla-Noarbe et al. 2018; Baqui
et al. 2021; Bechtol et al. 2025). However, these methods are ultimately limited by deblending errors,
incomplete PSF modeling, and the loss of informative spatial structure in catalog summaries.

Parallel investigations have examined models that ingest multi-band image cutouts together with catalog
features, allowing networks to learn morphology directly while leveraging color-based information (e.g.,
proximity to the stellar locus, color-color degeneracies, and uncertainty-aware colors; Kim & Brunner 2017).
Efforts increasingly incorporate PSF awareness (e.g. Patel et al. 2025), multi-epoch data (i.e., variabil-
ity), and deblending context to improve robustness across seeing conditions and sky regions, and explore
semi/self-supervised representation learning to exploit LSST’s vast unlabeled datasets. Looking ahead,
promising methodologies include end-to-end probabilistic deep learning that propagates PSF and noise
models into calibrated class probabilities (Burke et al. 2019), which can include prior probabilities based on
spatial location and spectrum (López-Sanjuan et al. 2019); vision transformers and graph neural networks
(GNNs) that integrate multi-visit information; multi-modal architectures combining images, colors, variability,
and proper motion; domain adaptation and label-shift correction to handle spatial and temporal hetero-
geneity; active learning using sparse spectroscopic labels; and simulation-based training on realistic survey
mocks. Emphasis on UQ, continual and federated learning across data releases, and physics-informed
constraints should yield classifiers that are both scalable and scientifically reliable at the LSST depth.

3.9. Deblending

· Methodology. VAEs, NPE, Instance segmentation, Diffusion models, Normalizing flows, CNNs,
Object detection, SOMs
· Challenges. Data sparsity, Metrics, UQ
· Opportunities. Multi-survey training, Data-driven Priors, Generative Models

Turning pixels into objects is a fundamental problem in astronomical survey pipelines. Object detection and
deblending of LSST data is a crucial step in producing catalogs useful for DESC science. Given its unprece-
dented depth for a ground-based survey, LSST will face new challenges in its detection pipelines compared
to previous legacy surveys (Melchior et al. 2021). Blending, or the overlapping of source light profiles, is
an imaging systematic that affects all downstream analysis, as it becomes difficult (in reality intractable) to
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disentangle photons from a given source in a blend. This problem is exacerbated with increased observ-
ing depth, as more light is collected from sources that are overlapping due to line-of-sight projections or
physical interactions. Traditional object detection pipelines for wide-field surveys use a maximum likelihood
estimator method (Bosch et al. 2018) to identify peaks in intensity corresponding to sources in an image.
This method, while statistically justified, is still subject to failure modes, wherein AI can provide alterna-
tive and complimentary methods. Similarly, traditional deblending algorithms typically rely on models and
assumptions about source light profiles that may not provide sufficient flexibility for the billions of sources
LSST will observe (Melchior et al. 2018). DESC has been exploring and developing AI methods to aid in
these challenging problems, which are crucial to understand and mitigate.

Catalog-level Blend Identification —While a majority of sources observed by LSST are expected to have
some level of blending, a particularly pernicious case is that of unrecognized blends. These are sources in a
blended scene that are indeed distinct (determined from high-resolution space-based observations), but are
only recognized as a single source by cataloging and deblending pipelines. Unrecognized blends impact
measured properties such as galaxy shapes (Dawson et al. 2016), photometric redshifts (Liang et al. 2025),
and more. Estimates of the level of unrecognized blends in LSST range from ∼ 15–30%, with analysis of
early LSST data compared to catalogs from the HST Cosmic Assembly Near-infrared Deep Extragalactic
Legacy Survey (CANDELS) yielding an unrecognized blend rate of 18% (Adari & von der Linden 2025).
Blends that remain at the catalog level are definitionally unrecognized blends but may still be detectable
as outliers via their multi-band photometry or their shapes. Random forests and SOMs along with various
anomaly detection algorithms were tested in Liang et al. (2025) who showed that unrecognized blends can
be detected at a cost to the sample size. These algorithms were used to assign an unrecognized blend
probability, however improvements can be made for specific science cases. For example, using the blend
entropy (Ramel et al., in prep) can improve cluster cosmology by removing the most problematic unrecog-
nized blends for cluster analysis. Designing better blending metrics like blend entropy and incorporating
them into ML algorithms like GNNs is the main goal of the software package, friendly .

Image-level Deblending Using Deep Learning —Deep learning algorithms designed for object detection
and deblending provide an alternative method to traditional pipelines that may help improve catalog com-
pleteness and source property measurements. For instance, the Bayesian Light Source Separator (BLISS)
framework uses NPE to infer probabilistic catalogs by training a CNN directly on multi-band images (Hansen
et al. 2022). BLISS produces well-calibrated posterior approximations for various source properties, and
point estimates based on these posterior approximations outperform the standard LSST pipeline in source
detection, flux measurement, star/galaxy classification, and galaxy shape estimation (Duan et al. 2025).
The method is robust to spatially varying backgrounds and point-spread functions, provided these features
are present in the simulated training images (Patel et al. 2025). The DeepDISC instance segmentation
(Merz et al. 2023) framework produces object catalogs and segmentation masks from image data, and is
being tested with joint Roman–Rubin data to incorporate multimodal information for downstream detection
and deblending improvement. Both DebVader (Arcelin et al. 2021) and Maximum A posteriori with Deep
NEural networks for Source Separation (MADNESS; Biswas et al. 2025) use VAEs to handle blending.
They use self-supervised training to learn the structure of isolated galaxies. Through additional training of a
deblending encoder they learn to isolate a galaxy from a blend. A specialized decoder can directly measure
the characteristics of the galaxy (shape, photo-z) without reconstructing explicitly the image of the isolated
galaxy. MADNESS adds a normalizing flow to the architecture to improve performance by modelling the
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latent-space distribution of galaxies, thereby providing an explicit likelihood for posterior optimization. On-
going work uses a multimodal VAE to learn both from imaging and spectroscopy, adding more information in
the latent space to improve the galaxy characteristics measurement, especially photo-z. The very principles
of deblending VAEs alleviate the impact of unrecognized blends, and ongoing work on the use of probabilis-
tic catalogs where the number of detected galaxies is itself non-deterministic will reduce it even more. Even
if sources are in such close proximity that LSST imaging will not be able to recognize the overlap and detect
the blended group as one source, it is feasible to model the detected sources first, compute the residuals
from the fit, and run detection again on the residuals. Because the residuals can have complicated struc-
ture, it is beneficial to perform the detection on multi-band residuals, where unrecognized sources appear
as colored, localized over- or underdensities. Recognizing them, as well as their likely centers is possible
and fairly effective with computer vision architectures like YOLO (Kamath 2020).

Data Driven Priors for Deblending with Explicit Likelihoods —Generative models such as normalizing flows
and diffusion models can be trained on unblended galaxies (potentially limited amounts of space-based
data) and then serve as data-driven priors for galaxy morphologies (Lanusse et al. 2019). Posterior op-
timization and sampling becomes possible for inverse problems with explicit likelihood functions (such as
inpainting, deconvolution, and deblending). This is particularly effective in low signal-to-noise ratio (SNR)
cases where the deblender scarlet, (Melchior et al. 2018) which is the default deblending method in the
Rubin Science Pipelines, is outperformed by a new, prior-augmented version from scarlet2 (Sampson
et al. 2024). The same approach can also perform transient photometry in the presence of a host galaxy
without the need for difference imaging (Ward et al. 2025). Additionally, posterior optimization in latent space
by the MADNESS deblender (Biswas et al. 2025), using data-driven priors, also outperformed scarlet.

3.10. Shape Measurement

· Methodology. Differentiable programming, Deep networks, SBI
· Challenges. Covariate shifts, UQ, Data sparsity, Scalability
· Opportunities. Joint optimization of detection, deblending, and shear, hybrid analytic–neural
estimators, realistic multi-instrument and multi-epoch scene modeling, active learning, unified
shear–photo-z modeling

Weak-lensing shape measurement is one of the most critical and challenging components of the DESC
analysis pipeline: small percent-level biases in ensemble shear propagate directly into the cosmological
parameters targeted by LSST. Meeting DESC requirements therefore demands methods that are simul-
taneously accurate enough to control multiplicative and additive shear biases, computationally efficient
enough to process billions of galaxies, and amenable to calibration. A unifying theme in recent work is
the exploitation of differentiability and GPU acceleration, both in explicit shear calibration schemes and in
forward models.

Analytic Calibration and Differentiable Shear Estimators —The Analytic Calibration (AnaCal) framework (Li
& Mandelbaum 2023; Li et al. 2025b) demonstrates how differentiability can be used to obtain high-precision
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shear responses and noise-bias corrections without relying on large external simulation campaigns. By
representing galaxy properties and pixelized images using differentiable basis functions, AnaCal yields
analytic shear responses for detection, selection, and shape measurement, achieving LSST-grade accuracy
with sub-millisecond inference per galaxy. More broadly, other calibration schemes such as metacalibration
(Huff & Mandelbaum 2017; Sheldon & Huff 2017) stand to benefit from differentiable image models and
measurement operators: with gradients available throughout the pipeline, shear response and noise-bias
corrections can be computed more quickly and robustly.

Deep Learning–Based Shape Estimators —Modern deep-learning architectures provide a natural path to
an end-to-end differentiable shear estimator that can simultaneously integrate detection, deblending, shear
estimation, and robustness to image defects. Neural networks are inherently GPU-accelerated, highly
parallel, and differentiable, making them well suited to high-throughput shear inference at LSST scale.
Such an approach was originally demonstrated in (Ribli et al. 2019) and is being explored in a DESC
context using the DeepDISC architecture (Merz et al. 2023), which was originally designed as a general
purpose architecture for detection and segmentation and which can estimate gravitational shears within
a single GPU-resident and differentiable model. Being automatically differentiable, this estimator can be
calibrated using the schemes mentioned above.

Hierarchical Forward Modeling with Differentiable Image Simulators —A complementary strategy frames
shape measurement as a hierarchical forward-modeling problem, in which cosmological parameters,
population-level distributions of galaxy properties, and individual galaxy shapes are inferred jointly from
the pixel data (Schneider et al. 2015). In this view, a forward model generates simulated images given a
set of hierarchical parameters, and inference proceeds by comparing these simulations to the observed
images. Such approaches are made practical thanks to the JAX-GalSim effort which re-implements key
GalSim (Rowe et al. 2015) functionalities in JAX, making this forward model fully differentiable and GPU-
accelerated while supporting vectorized batch simulations of thousands of galaxies at once. In ongoing
DESC efforts, JAX-GalSim is used to implement the hierarchical shear-inference framework of Schneider
et al. (2015). Instead of traditional MCMC, gradient-based samplers (NUTS), GPU acceleration, and batch-
ing can be used to yield roughly an order-of-magnitude speedup while keeping multiplicative shear biases
within LSST requirements. While the aforementioned approach relies on analytic surface brightness pro-
files to model galaxies, more realism can be achieved through projects like scarlet2 (Sampson et al. 2024)
which extends the modeling to non-parametric morphologies and blended scenes observed with multiple
instruments, providing a JAX-based, differentiable scene-modeling framework in which gradients of the
likelihood with respect to source parameters and hyperparameters are readily available.

3.11. Synthesis and Recommendations

ML has become a foundational component of the collaboration’s scientific infrastructure. It appears at every
stage of the analysis pipeline: from pixel-level data processing (deblending, shape measurement) through
derived observables (photo-z, cluster masses) to cosmological inference itself (weak lensing, SNe, clus-
ters). Adoption is not driven by bespoke, application-specific methods. Instead, a small set of core method-
ologies and a consistent set of fundamental challenges recur across the entire application landscape, as
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visualized in Figure 1. These cross-cutting patterns have direct implications for how DESC should organize
its AI/ML efforts, prioritize methodological investments, and structure collaboration-wide infrastructure.

Among shared approaches, a few key methodologies appear repeatedly: SBI, enabling parameter
estimation from lensing to supernovae, though constrained by the fidelity of forward-models; differentiable
programming frameworks such as jax-cosmo, JAX-GalSim, scarlet2, for unlocking gradient-based infer-
ence at scale; NDE and generative models such as pop-cosmos, DebVader, and MADNESS, which provide
flexible probabilistic representations with demonstrated cross-application reusability; emulators such as
CosmoPower-JAX and speculator, which trade training cost for orders-of-magnitude speedups; and active
learning, for maximizing scientific return from limited expert annotations. These techniques recur because
the scientific challenges in DESC (extracting maximal information under stringent systematic control,
scaling to billions of objects, marginalizing over complex nuisance parameters) demand the same classes
of solutions regardless of the specific probe. The fundamental challenges in the use of these techniques
are equally shared between domains: covariate shifts, spectroscopic selection bias in photo-z, sim-to-real
gaps in SNe, model misspecification limiting SBI, and domain adaptation across surveys; UQ, obtaining
well-calibrated posteriors and propagating uncertainties to cosmological constraints; scalability, from
billions of galaxies to 107 nightly alerts, demanding algorithmic and infrastructure innovations; data sparsity
and rare events, including limited labeled samples, rare transients, class imbalance, and challenging edge
cases like blending; and metrics and evaluation, defining task-relevant metrics, validation frameworks, and
stress tests aligned with DESC science requirements. Addressing these methodologies and challenges in
a general, reusable way (rather than independently within each working group) has multiplicative impact:
improving SBI’s robustness to covariate shifts benefits not only clusters but also photo-z, lensing, and SNe;
developing robust UQ enhances reliability for deblending, shape measurement, and generative simulations
simultaneously.

The shared methodological approaches and barriers documented above demand a coordinated response.
DESC should establish collaboration-wide AI/ML coordination mechanisms (e.g., standing working group,
cross-WG task forces, interchange meetings) to ensure methodological innovations are rapidly evaluated
for applicability across probes, common challenges are tackled collectively, and duplication is minimized.
DESC should also invest in shared infrastructure and benchmarks (reusable libraries, e.g., jax-cosmo and
JAX-GalSim, standardized interfaces, e.g., RAIL for photo-z, and validation frameworks that stress-test
methods under covariate shift and model misspecification) recognizing that these investments have multi-
plicative returns. DESC should develop collaboration-wide best practices and validation standards for ML
methods intended for cosmological inference, establishing requirements for UQ calibration such as cov-
erage tests and probability integral transform (PIT) histograms, distribution-shift diagnostics, stress tests
under deliberate misspecification. Finally, mechanisms to facilitate rapid dissemination of knowledge (e.g.,
AI/ML workshops, shared tutorials, method spotlights in collaboration meetings) would accelerate the trans-
fer of innovations across working groups.
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4. Methodological Research Priorities to Advance ML for Precision
Cosmology

Extracting robust cosmological constraints from LSST requires not only advanced algorithms but also a
coherent methodological foundation that bridges simulation, data processing, and inference. Each of these
pillars must meet unprecedented demands in scale, accuracy, and interpretability, demands that challenge
the limits of both physical modeling and ML. Beyond simply applying existing AI techniques, DESC must
develop methods tailored to the structure of astronomical data, the physics of observables, and the statistical
rigor required for precision cosmology.

The scientific ambitions of LSST thus motivate AI/ML research in several key areas. First, Bayesian in-
ference and UQ must evolve to handle the high-dimensional, hierarchical models that describe cosmic
fields and galaxy populations, while maintaining interpretability and calibration across vast data volumes.
Second, SBI and related implicit-likelihood methods must confront the challenge of model misspecification
and covariate shifts, ensuring that learned posteriors remain valid when simulations imperfectly represent
real observations. Third, physics-informed modeling, through differentiable programming and hybrid gen-
erative–physical architectures, offers a path toward interpretable and physically consistent deep learning,
capable of representing both known and unknown components of the Universe. Fourth, discovery and
anomaly detection are essential to LSST’s potential for unexpected science, requiring representation learn-
ing and active human-AI collaboration to identify rare and previously unmodeled phenomena.

This section examines these research directions in detail, outlining both recent progress and outstanding
challenges. We emphasize not only algorithmic innovation but also the validation, calibration, and inter-
pretability principles required to integrate AI into cosmological analysis pipelines.

The fundamental question is: What would convince us of a cosmological result obtained with AI? Answering
this question defines the research agenda for AI/ML in DESC and ensures that ML becomes not merely a
computational shortcut, but a scientifically trustworthy component of cosmological inference.

4.1. Bayesian Inference and Uncertainty Quantification

UQ represents perhaps the most critical challenge for deploying deep learning in precision cosmology. It
is an area where AI in the sciences demands solutions that differ from those in many commercial settings.
Robust UQ must distinguish between aleatoric uncertainties (irreducible measurement noise) and epis-
temic uncertainties (model limitations and incomplete knowledge), as these have fundamentally different
implications for cosmological inference and systematic error budgets. ML is poised to be revolutionary for
inference, but only if current challenges are satisfactorily addressed.

4.1.1. Explicit Likelihood-Based Bayesian Inference
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· Related Methodologies. Hierarchical Bayes, VI, Gaussian processes
· Addresses. UQ, Scalability

The inferential paradigm in astrophysical and cosmological data analysis has been for the past two decades
primarily Bayesian, as this offers conceptual, methodological, and computational benefits (Trotta 2008). The
massive increase in data size and complexity afforded by LSST will require a new step forward in inferential
methodology, as LSST data will challenge the computational feasibility of current inferential engines. We
cover in this section the case of explicit inference, where we have the ability to directly evaluate the log-
likelihood of our probabilistic models, and potentially its gradients.

Accelerating Posterior Inference —MCMC methods have been the workhorses of likelihood-based
Bayesian parameter inference to date. Notable examples are Gibbs sampling (Casella & George 1992) and
parallelized versions of Metropolis–Hastings (e.g., the affine-invariant sampler by Goodman & Weare 2010;
Foreman-Mackey et al. 2013). For cases where multimodality and/or strong parameter degeneracies are
important, nested sampling (Skilling 2006; Ashton et al. 2022) in its many variants (e.g., MultiNest Feroz &
Hobson 2008; Feroz et al. 2009; PolyChord Handley et al. 2015a,b; dynesty Speagle 2020; DNEst4 Brewer
& Foreman-Mackey 2018), recently improved with gradients (Lemos et al. 2024), accelerated with neural
emulators (Lovick et al. 2025), or normalizing flows (Williams et al. 2021) have been key to ensuring reliable
inference.

However, as analyses become increasingly complex, involving large numbers of nuisance parameters and
expensive likelihood evaluations, the cost of running cosmological inference with conventional techniques
becomes prohibitive.

One avenue to speed up inference is to leverage access to the gradients of the log-posterior. When such
gradients are available, a number of inference methods can benefit from them, including the well-established
HMC (Neal 2011), as well as more modern generalizations such as NUTS (Hoffman & Gelman 2014). Re-
markably, physical ideas continue to lead the development of gradient-based inference techniques. Rie-
mann Hamiltonian Monte Carlo (RHMC Girolami & Calderhead 2011) simulates trajectories in arbitrary
geometries by following the geodesics of the likelihood manifold. This makes RHMC schemes extremely
robust sampling algorithms for high-dimensional inference in the face of severely non-gaussian posteriors.
However, RHMC has not seen a wide spread adoption due to instability of second-order auto-differentiation
needed to compute the curvature of the likelihood. In a similar vein, relativity-inspired HMC schemes (Xu
& Ge 2024) have recently been proposed that particularly target Minkowski geometries. This effectively
introduces a maximum speed for the simulated particle, slowing it down in the areas of most challenging
geometry, achieving most of the goals of RMHC without many of its hurdles. The recent Ray-tracing sampler
(Behroozi 2025) take a related approach, using light refraction as the guiding analogy to steer samples to-
ward high-likelihood regions while providing a unifying framework in which HMC, LMC, and related methods
emerge as special cases. As an alternative to Hamiltonian dynamics, Langevin Monte Carlo (LMC; Rossky
et al. 1978) is based on a Langevin diffusion (an SDE whose invariant distribution is the target posterior)
and in practice simulates a discretization of this process to generate approximate posterior samples. In
this framework, the Metropolis adjustment that ensures the target distribution is sampled can be replaced
with a bias requirement on the solution of the SDE, leading to significant speed ups (Grumitt et al. 2022).
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A final avenue of improvement is to revise the assumed partition function of the particles simulated by the
inference algorithm. Traditional HMC schemes assume that the distribution of particles being simulated
follows a canonical partition function. However, more efficient sampling schemes can be constructed by ex-
ploring other partition functions. Microcanonical or energy-conserving HMC (MCHMC, Robnik et al. 2023)
explores the posterior distribution using a single energy shell. In a way similar to relativistic schemes, this is
achieved by modifying the momentum of the particle to slow down at the regions of high-posterior density
(Ver Steeg & Galstyan 2021), leading to a far more efficient sampling. Micro-canonical Langevin Monte
Carlo (MCLMC; Robnik & Seljak 2024) is a sampling algorithm that combines all the ideas described above
to great success. MCLMC already has been deployed to perform inference on physics problems such as
lattice field theory simulations (Robnik & Seljak 2024) and even for cosmology where it has been shown to
speed up field-level inference by an order of magnitude (Bayer et al. 2023; Simon et al. 2025). This makes
MCLMC the cutting edge of gradient-based inference schemes and a promising tool to speed up analyses
within DESC.

Alternatively, one can replace a complicated posterior distribution with a more tractable one. VI aims to
find an approximation to the posterior distribution p by a “surrogate” parametrized distribution qϕ, whose
parameters ϕ are trained to minimize the Kullback-Leibler divergence between q and p (see, e.g., Uzsoy
et al. 2024; Campagne et al. 2023, using the JAX-powered NumPyro framework, Phan et al. 2019). Here
gradients are only needed for q, not for p.

Another area of research focuses on neural sampling methods, which leverage in various ways neural
networks to accelerate sampling while attempting to preserve asymptotic correctness guarantees. For
example, normalizing flows have been used to re-parameterize the sampling space and cure complex
geometries (Gabrié et al. 2022). Another recent line of research also leverages ideas from diffusion models
and uses a neural score model to accelerate sampling (Havens et al. 2025).

As shown above, such inference strategies depend on differentiable components and will benefit greatly
when likelihood codes are rewritten in frameworks that support automatic differentiation. An additional ad-
vantage of making probabilistic models compatible with such frameworks is that they usually support GPU
acceleration and vectorization, which opens up yet another avenue for acceleration—e.g.,the Numpyro
(Phan et al. 2019; Bingham et al. 2019) and BlackJax (Cabezas et al. 2024) libraries written in JAX. Affine-
invariant samplers (see Foreman-Mackey et al. 2013) are particularly suited to vectorization on GPU hard-
ware, as has been demonstrated in astronomy contexts (e.g.,Thorp et al. 2024a, 2025b, using the affine

sampling code).

Bayesian model comparison —Estimation of the Bayesian evidence, the central quantity for model compar-
ison, remains challenging when the models being compared are very high dimensional. Nested sampling
has been established as one of the main methods for Bayesian evidence computation, but in its original
formulation it suffers from the curse of dimensionality: the efficiency of the constrained sampling step de-
creases rapidly as the dimensionality of parameter space increases. This has been somewhat mitigated
by recent developments such as PolyChord (Handley et al. 2015a), which can be used in a few hundreds
of dimensions; dynesty (Speagle 2020), which uses dynamical allocation of live points (see also Higson
et al. 2019); and gradient-guided nested sampling (GGNS; Lemos et al. 2024), which exploits gradients,
generative flows and differentiable programming to achieve better efficiency and accuracy in up to ∼ 200

dimensions. A suite of other methods for the evaluation of the high-dimensional average of the likelihood
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over the prior are also being explored, sometimes combining density estimation with neural techniques
(e.g., Heavens et al. 2017; McEwen et al. 2021; Srinivasan et al. 2024). However, they remain confined to
moderately low-dimensional parameter spaces, of order a few tens of dimensions.

The frontier represented by evidence estimation in very large dimensional (of order 103 or more) parameter
spaces from real data remains largely untouched outside of synthetic demonstration examples where the
ground truth is known. NRE shows promise in this respect, in that evidence estimation can be obtained from
an NRE architecture by adding a suitable inferential head that is trained only on model labels, thus implicitly
marginalizing over all parameters in the model. Such an approach naturally also generalizes to performing
Bayesian model averaging. An example of this method is Karchev et al. (2023a), where six models for
empirical corrections for SN Ia data are compared from Carnegie Supernova Project (CSP) observations
(Krisciunas et al. 2017) within a Bayesian hierarchical model setting with ∼ 4, 000 latent variables.

Hierarchical Bayesian Models in Extremely High Dimensions —The manyfold increase in data size requires
in many cases a more sophisticated model to capture previously unimportant effects; this in turn increases
the dimensionality of the parameter space (especially in hierarchical models, where the latent space dimen-
sionality scales with the number of objects within the model); the likelihood might become intractable, or
previously used approximations, such as approximate Gaussianity or linear propagation of errors (Karchev
et al. 2023b), neglecting of Eddington bias (Karchev & Trotta 2025), might break down.

Section 3.3 introduced so-called full-field inference for cosmological surveys, in which not only cosmological
parameters are inferred but also the initial conditions that seed the evolution of the large-scale structure of
the Universe (Porqueres et al. 2023). The fidelity of the forward simulation directly controls the accuracy of
posterior constraints on cosmological parameters; consequently, this approach requires exploring extremely
high-dimensional parameter spaces (millions to billions of parameters). Sampling such spaces is intractable
for traditional MCMC and instead calls for gradient-based methods, as noted above. This, in turn, demands
a forward simulation that is both fast and differentiable (see Section 3.7) to make full-field inference at LSST
scale attainable.

It is worth noting that such hierarchical full-field inference models are substantially more computationally
expensive than alternative SBI methods (see next section 4.1.2), but offer several advantages. First, an-
alyzing statistical errors directly in data space is more interpretable than working with the compressed
summary statistics typical of SBI workflows; even with optimal compression, signals can mix and model
misspecification becomes difficult to detect. Here, systematic contamination can be treated as additional
parameters to be sampled (Porqueres et al. 2019), becoming a machine-aided report of contaminations that
have a characteristic pattern on the sky. Second, hierarchical Bayesian inference is designed for extensible,
modular models in which new physics can be added—e.g., augmenting the simulation with a baryonifica-
tion model—whereas SBI would require retraining neural density estimators from scratch. Taken together,
these properties make hierarchical Bayesian inference well suited to joint inference of cosmology, system-
atics, and redshift-distribution uncertainties—capabilities that are considerably more difficult with implicit
approaches. Additionally, hierarchical inference provides a digital twin of the Universe, which has multiple
scientific applications but also provides a unique way of testing the results by cross-validating with indepen-
dent data (Stopyra et al. 2024).
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4.1.2. Implicit Likelihood Bayesian Posterior Inference

· Related Methodologies. SBI, NPE, Normalizing flows
· Addresses. UQ, Scalability

The other paradigm is implicit inference, in which we do not assume direct access to the likelihood function,
but only have access to samples from the joint distribution p(x, θ) of data samples x and parameters of
interest θ. It should be noted that this situation covers both the case of SBI, and the case where x and θ

are available from a training sample of real observations (the canonical example being photo-z estimation
from a set of spectroscopic observations).

In particular, SBI is rapidly emerging as a powerful alternative to traditional fitting techniques for Bayesian
models. The key idea is to replace an explicit likelihood function by forward simulating (under the model)
parameter-data pairs, which are then used to train a neural network to perform inference (e.g., Alsing et al.
2018; Alsing & Wandelt 2018, 2019; Savchenko et al. 2024; Lyu et al. 2025). The advantages are that
the (potentially intractable) likelihood can, in principle, incorporate physical effects of arbitrary complex-
ity, which would otherwise be difficult to model (including, e.g., selection effects and complex parameter
dependencies). In some variants (Miller et al. 2021) the 1- or 2-dimensional marginal distribution for the
parameters of interest is targeted directly, thus circumventing the need to evaluate the high-dimensional
joint posterior over all parameters in the model; such approaches are naturally suited to Bayesian evidence
estimation (Karchev et al. 2023a).

Additionally, inference can be amortized within a certain prior range, meaning that once trained the network
can deliver almost instantaneous posteriors for a wide range of parameter values, a critical benefit when
dealing with billions of galaxies (Hahn & Melchior 2022). This speed-up also permits posterior calibra-
tion methods (e.g., guaranteed coverage), which are computationally unfeasible with traditional posterior
evaluation methods.

Neural Density Estimation (NDE) methods —The fundamental building blocks of these methods is NDE,
where a neural network is used to estimate a distribution, or a ratio of distributions. Various kinds of
methods exist: NLE (e.g., Papamakarios et al. 2019; Lueckmann et al. 2019; Alsing et al. 2019), NPE
(e.g., Papamakarios & Murray 2016; Lueckmann et al. 2017) and NRE are among the most popular (for
an overview see Alsing et al. 2019; Cranmer et al. 2020; Lueckmann et al. 2021). Implementations of NLE
and NPE both learn a density based on simulated parameter-data pairs (see, e.g., Alsing et al. 2019), with
a variety of different approaches used for learning the multivariate joint or conditional density. Approaches
to this include Gaussian mixtures (e.g., Alsing et al. 2018), mixture density networks (e.g., Papamakarios
& Murray 2016), and normalizing flows (e.g., Papamakarios et al. 2017, 2019; Alsing et al. 2019; Jeffrey
et al. 2021; Hahn & Melchior 2022; for a review see Kobyzev et al. 2021; Papamakarios et al. 2021).
More sophisticated density estimators used in generative modeling – such as continuous normalizing flows
(Grathwohl et al. 2018; Chen et al. 2018), score-based diffusion models (Song et al. 2020), flow-matching
models (Lipman et al. 2022), and transformers (Vaswani et al. 2017) – are also well suited to NLE and NPE
tasks (e.g., Diaz Rivero & Dvorkin 2020; Geffner et al. 2023; Wildberger et al. 2023; Gloeckler et al. 2024)
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alongside the generative modelling tasks they are commonly used for (e.g., Alsing et al. 2024; Cuesta-
Lazaro & Mishra-Sharma 2024; Thorp et al. 2025b).

Optimal Neural Summarization —To ensure the robustness of implicit inference, the process is usually
divided into two main steps enabling each neural network to focus on a specific task: (1) compression
of high-dimensional data into informative summary statistics, and (2) performing Bayesian inference using
neural density estimation methods on this low dimensional but highly informative statistic. To maximize
information extraction and improve constraints on cosmological parameters, the community has increasingly
adopted neural network–based summarization techniques. While any neural network can be trained on the
regression task of inferring parameters given data (e.g., Gupta et al. 2018; Kacprzak & Fluri 2022; Lu
et al. 2023), it is unclear how much of the information contained in the data is extracted. In particular,
Lanzieri et al. (2025) demonstrate that standard regression loss functions do not guarantee the systematic
construction of sufficient statistics. Information-maximizing neural networks (IMNNs; Charnock et al. 2018)
directly address this problem by learning summary functions that maximize the Fisher information. They
can produce nearly exact posteriors and are thus approximately sufficient statistics of the data. Another
approach is to derive a loss function directly from the definition of sufficiency, i.e., by maximizing the mutual
information between the summary statistics and parameters of interest (Jeffrey et al. 2021; Chen et al.
2021).

Controlling Epistemic Errors in Inference Results —One fundamental limitation of NDE methods is that
their reliance on a neural network to model at some level the likelihood of the data is inherently imper-
fect. In the asymptotic regime of infinite data and flexible neural network, the approximation to the target
posterior will converge, but in practice we are never guaranteed to find ourselves in this regime, and must
therefore take into account and mitigate epistemic errors. Several strategies have been developed over
the years to quantify and mitigate this epistemic uncertainty on inference results. MCMC sampling over
network parameters provides gold-standard uncertainty estimates but at usually prohibitive computational
cost (e.g. Behroozi 2025). In addition, detecting convergence of the chain remains difficult, usually neces-
sitating drawing more samples than ultimately needed. Because such approach is extremely expensive,
other approaches have been developed. BNNs approximate the posterior distribution over network param-
eters through VI, providing principled uncertainty estimates at reduced computational cost. However, the
tradeoff between approximation quality and speed remains concerning, especially in the highly multi-modal
loss landscapes of deep neural networks. In such settings, scalable variational methods often collapse to a
single mode of the posterior rather than exploring the full diversity of solutions (Fort et al. 2019), which limits
the quality of their uncertainty estimates. One of the most used VI methods in astronomy is Monte Carlo
dropout which utilizes the dropout layer commonly introduced in deep neural networks to prevent corre-
lated activation as one of the computationally cheapest approximations to Bayesian inference; however, its
theoretical justification and empirical accuracy are questionable (Le Folgoc et al. 2021). Nonetheless, com-
parisons with other methods have shown promise for astronomical applications: strong lensing (Perreault
Levasseur et al. 2017), supernova time-series classification (Möller & de Boissière 2020, 2022), and star
time-series classification (Donoso-Oliva et al. 2023; Cádiz-Leyton et al. 2025b,a). Other VI methods such as
Bayes by Backprop and SWAG have been sparsely used for time-series classification and regression with
mixed results (Möller & de Boissière 2020; Cranmer et al. 2021). Another strategy is Deep Ensembles in
which multiple networks are trained from different random initializations to provide uncertainty estimates via
the variance of their predictions (Makinen et al. 2021; Möller et al. 2022, 2024). Unlike variational methods,
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ensembles capture uncertainty by effectively sampling from different modes of the loss landscape, result-
ing in more robust and better-calibrated uncertainty estimates. However, they are more computationally
demanding than MC dropout, and do not mitigate errors arising from model misspecification. Compara-
tive studies exploring the trade-offs between these UQ methodologies for achieving superior uncertainty
evaluation are a growing focus in the field (Cádiz-Leyton et al. 2025b).

4.1.3. Model Mispecification and Covariate Shifts

· Related Methodologies. SBI
· Addresses. Covariate shifts

From a technical standpoint, SBI has achieved impressive results: NPE with normalizing flows performs well
in low-dimensional regimes (e.g., Srinivasan et al. 2025), NLE scales satisfactorily to higher dimensions,
and marginal NRE has shown success across diverse applications (e.g., Alvey et al. 2024; List et al. 2023;
Franco-Abellán et al. 2024; Saxena et al. 2024). Yet, these demonstrations rely primarily on simulated data
and therefore represent best-case scenarios; direct validations of SBI on real data remain scarce (Karchev
et al. 2024; Lüber et al. 2025).

The robustness of SBI depends critically on the realism and completeness of the simulations that underpin
it. Simulations must reproduce all relevant aspects of the observations, including astrophysical, instru-
mental, and observational effects. Any unmodeled process leads to domain shift or model misspecifica-
tion, which can severely bias inference. This is particularly problematic for NRE, which relies on accurate
joint modeling of data and parameters (Filipp et al. 2025), while NLE is comparatively more interpretable
since it operates directly in data space. Even when the theoretical model is sound, the observational
and noise models must be equally faithful—a condition often unmet given the traditional divide between
theoretical and observational cosmology. Bridging this gap is essential for SBI to succeed. Efforts are un-
derway to diagnose and quantify model misspecification through simulation-based calibration and related
approaches (Talts et al. 2018; Lemos et al. 2023; Chen et al. 2025; Anau Montel et al. 2025; Kelly et al.
2025). While model misspecification is a key vulnerability of SBI, it is not fundamentally different (if more
difficult to diagnose and cure) than the similar risk incurred when using explicit, likelihood-based models:
missing components of the model w.r.t. the true data-generating process will lead to potentially severe bias
in the resulting inference. SBI is a relatively new technique, and therefore appropriate diagnostic tools are
still being developed to ensure its robustness and reliability.

Training Set Representativity —A fundamental challenge across deep learning applications in astronomy
is the representativity of training data. Models trained on simulations may fail to generalize to real ob-
servations, while those trained on current surveys may struggle with the deeper, higher-resolution LSST
data. Techniques such as fake source injection—embedding simulated objects into real images—can mit-
igate these gaps (Suchyta et al. 2016; Huang et al. 2018), though their success depends on how realistic
the injected sources are. The problem is particularly acute for rare phenomena, where training examples
are intrinsically limited. To improve generalization, domain adaptation, transfer learning, and hierarchical
Bayesian methods are being explored. E.g., Swierc et al. (2024) use domain adaptation to obtain more
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robust data summaries that can generalize well between simulated data and mock observations, enabling
more accurate neural density estimation. Principled approaches such as stratified learning (discussed in
Section 3.1) can mitigate covariate shift with little modification in the learning procedure, but other meth-
ods often require substantial experimentation and modifications of training procedures (Krishnaraj et al.
2025). Such corrections must themselves be treated as part of the inference pipeline and undergo rigorous
calibration and uncertainty quantification.

Physics Hardening —When available datasets are incomplete or non-representative, physics-informed aug-
mentation can enhance robustness. For example, the DESC ELAsTiCC challenge (Knop & ELAsTiCC Team
2023) injected transients simulated using semi-analytic models (e.g., SNe, KNe) to make classifiers more
resilient to underrepresented classes, and Moskowitz et al. (2024) augmented spectroscopically-incomplete
training samples with simulated photometry to improve photometric redshift estimation. Latent represen-
tations derived from SPS models can also be used to generate synthetic photometry for missing or in-
complete observations (e.g., pop-cosmos Alsing et al. 2024; Thorp et al. 2025b; Deger et al. 2025), and
facilitate comparisons with hydrodynamical simulations without observational systematics. However, these
methods inherit the assumptions and uncertainties of the underlying theoretical models—such as uncer-
tain nebular emission strengths in SPS (Byler et al. 2017; Li et al. 2025c; Morisset et al. 2025; Newman
et al. 2025)—which can themselves introduce model misspecification (Leistedt et al. 2023; Jespersen et al.
2025). Addressing these limitations requires deeper astrophysical modeling of galaxy formation and evolu-
tion, as well as diagnostic tools for identifying misspecification in high-dimensional generative models (e.g.,
Thorp et al. 2025a). Because physics-informed generative models (e.g., those that capture information
within SPS parameterizations) can be used to synthesize observables that the model has not been trained
on, such models can be validated not only against unseen data from a test set but also on new types of
observations and other surveys (e.g., Alsing et al. 2023, 2024; Thorp et al. 2024a, 2025b; Deger et al.
2025).

4.1.4. Validating Inference Results

· Addresses. UQ, Metrics

While the quality of neural posteriors can be tested (Talts et al. 2018; Lemos et al. 2023), and while statistical
tests can be performed to determine the probability that the distribution learned by a generative model is
identical to that of the training data (Lemos et al. 2024), an open issue is the determination and procurement
of a sufficient volume of training data for those tests to be sufficiently sensitive and for the learned distribution
to be accurate.

Models trained on the same data but with different algorithms exhibit distinct probability calibration charac-
teristics that must be evaluated and corrected. Similarly, identical algorithms trained on different training
sets require independent calibration assessment. Common diagnostics include reliability diagrams used in
time-series classification (Möller & de Boissière 2020) or non-conformity scores from conformal inference
techniques (Xie et al. 2025), both of which compare predicted probabilities against observed frequencies.
Detection of anomalies, i.e., the classification whether a signal is anomalous enough to be reported, is
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particularly vulnerable because it probes the tails of a learned distribution. For regression tasks, calibra-
tion ensures that predicted uncertainties accurately capture the true error distribution. Poorly calibrated
uncertainties can introduce systematic biases in downstream cosmological analyses, leading to incorrect
parameter constraints. Recalibration methods for lens modeling are presented by, e.g., Perreault Levasseur
et al. (2017), Karchev et al. (2022b), and Gentile et al. (2023). Regarding generative models, Campagne
(2025) propose a “two-models” framework to evaluate their statistical consistencies trained on independent
subsets of galaxy images. The results emphasize the need for large-enough datasets to enable calibration
and validation strategies specific to each generative architecture (e.g., generative adversarial networks,
normalizing flows and score-based diffusion), since apparent visual quality and morphological variable dis-
tributions alone do not guarantee statistical reliability.

4.2. Physics-Informed Approaches

From a high-level point of view, neural networks are never perfectly trustworthy and are often hardly inter-
pretable. This motivates a general desire to build physics-informed models, which can leverage as many
explicit physical constraints as possible, thus limiting the potential failure modes of AI components.

4.2.1. Hybridization of Generative Modeling and Physical Models

· Related Methodologies. Normalizing flows, Diffusion models, Neural surrogates, Differentiable
programming
· Addresses. Covariate shifts, Scalability

A promising direction for scientific inference is the hybridization of explicit, physics-based models with gener-
ative components that flexibly represent unknown or intractable distributions. In this framework, flow-based
or diffusion models serve as probabilistic priors over complex latent variables, such as galaxy morphol-
ogy or small-scale baryonic processes, while the rest of the model remains physically interpretable and
simulation-driven. These generative priors have already proven powerful in astronomical inference, e.g., in
the estimation of galaxy properties and photometric redshifts at scale (e.g., pop-cosmos; Alsing et al. 2024;
Thorp et al. 2024a, 2025b; Deger et al. 2025), and in the generation of high-fidelity, field-level H I maps
from dark matter simulations (Mishra et al. 2025). More broadly, generative models naturally support amor-
tized inference frameworks, where neural posterior estimators are trained on samples from the generative
process, enabling accurate Bayesian inference without MCMC sampling but at the cost of greater upfront
training effort.

Differentiable Programming —To fully integrate such probabilistic components with physical simulations,
modern astrophysical codes are increasingly being reimplemented in automatic-differentiation libraries. Dif-
ferentiable simulators eliminate the approximation errors of emulators and provide exact gradient informa-
tion for optimization and uncertainty quantification. Examples include differentiable particle-mesh cosmo-
logical solvers (Modi et al. 2021; List et al. 2025), theoretical cosmology computations in jax-cosmo (Cam-
pagne et al. 2023), galaxy–halo connection models in Diffsky/Diffstar (Alarcon et al. 2023), stellar pop-
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ulation synthesis in DSPS (Hearin et al. 2023), halo-model calculations in halox (Kéruzoré 2025), and differ-
entiable image simulations in JAX-GalSim (GalSim Developers 2025).

While the widely used GalSim library (Rowe et al. 2015) produces realistic galaxy images, its non-
differentiable design limits efficient gradient-based inference. In contrast, the emerging JAX-GalSim library
reimplements core GalSim functionalities in JAX, yielding GPU-accelerated, fully differentiable forward mod-
els that enable direct gradient computation for both population-level and individual-level parameters. Sim-
ilarly, scarlet2 offers a JAX-based, differentiable framework for non-parametric source morphologies and
blended scenes observed by multiple instruments. Both libraries support vectorized batch simulations, cru-
cial for large-scale hierarchical inference, and allow gradients of differentiable likelihoods to be computed
automatically for maximum-likelihood estimation, variational inference, or gradient-based MCMC.

High-Dimensional Inverse Problems with Explicit Likelihood and Data-Driven Priors —High-dimensional in-
verse problems are central to cosmology, from galaxy deblending and strong-lensing source reconstruction
to recovering the dark matter field from noisy data. In these settings, the forward process, such as instru-
mental response, noise model, or lensing distortion, is well understood and can be encoded in an explicit
likelihood. The underlying components, however, such as galaxy morphologies or the non-Gaussian dark
matter structure, lack closed-form descriptions and require expressive statistical models. Generative mod-
els, such as diffusion models, can learn realistic priors from high-dimensional observations or simulations.
Combining such data-driven priors with explicit likelihoods yields a principled framework: the prior enforces
realistic structure, while the likelihood anchors inference to the data, even under low SNR conditions where
fully amortized approaches may drift. Recent works have demonstrated this hybrid approach for galaxy
source reconstruction, strong lens modeling, and superresolution (Adam et al. 2022; Barco et al. 2025b;
Adam et al. 2025) and dark matter field inference (Remy et al. 2023). Moreover, the presence of an explicit
likelihood enables learning data-driven priors directly from observations, through iterative refinement using
posterior samples (Rozet et al. 2024; Barco et al. 2025a), and can even allow for the correction of model
misspecification (Payot et al. 2025). A remaining challenge is efficient posterior sampling, as inference with
diffusion priors entails solving ordinary differential equations (ODEs), which is computationally demanding,
although it can be performed practically at scale (see, e.g., Thorp et al. 2024a, 2025b).

4.2.2. Imposing Consistency with Physical Equations and Symmetries

· Related Methodologies. Physics-informed ML
· Addresses. Covariate shifts, Metrics

For trustworthy results, we additionally demand that the AI/ML outputs at various stages of the pipeline
satisfy null tests (e.g., B-modes in gravitational lensing or rho-statistics for PSF modeling, Rowe 2010) or
obey the laws of physics of the corresponding analysis component rather than merely report final results with
high fidelity. The modularity of the pipelines and multi-scale nature of the phenomena asks for validations at
every analysis stage. Crucially, our knowledge of physical relations (in the universe, in the atmosphere, in
the instrument) permits a form of validation that is typically omitted or impossible in industry applications of
AI/ML. This motivates research in areas such as invariant/equivariant representation learning and geometric
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learning, with possible interdisciplinary implications beyond the scope of DESC (Ferguson et al. 2025).
Furthermore, the use of symmetry-aware equivariant neural networks (ENNs) could help with the extraction
of more robustness features from the data and, in combination with domain adaptation, enable easier
mitigation of covariate shifts (Pandya et al. 2025a). E.g., with physics-informed neural networks (PINNs)
one can, in principle, find solutions for explicitly specified differential equations if their optimization could be
made more robust (Rathore et al. 2024).

4.3. Novelty Detection and Discovery

· Related Methodologies. Anomaly detection, Self-supervised learning, Active learning
· Addresses. Covariate shifts, Data sparsity

A central scientific promise of LSST lies in its potential for unexpected discovery. Many now-fundamental
astrophysical phenomena, such as strong lenses, fast radio bursts, and pulsars, as well as singular sys-
tems like the Bullet Cluster, were first identified as anomalies. With an anticipated catalog exceeding 20
billion galaxies and roughly 10 million alerts per night, however, detecting novel phenomena in LSST data
represents an unprecedented challenge.

Generative models offer a powerful framework for unsupervised discovery by learning the ensemble prop-
erties of galaxy images, spectra, photometry, and time-domain behavior, and by enabling the detection
of statistically anomalous signals without labeled training data (Liang et al. 2023). In time-series and
high-energy astronomy, representation learning has already proven effective for discovery-oriented anal-
yses (Dillmann et al. 2025; Song et al. 2025). However, a common failure mode of generative models,
where atypical signals appear highly typical (Nalisnick et al. 2018), will mean that true outliers may not be
recognized, a loss if we seek to find them (e.g., rare SN types such as pair instability SNe) and a problem
if they contaminate carefully selected samples used in high-precision cosmology (e.g.,unrecognized blends
in shape catalogs, Dawson et al. 2016; or catastrophic outliers in photo-z estimates). More specifically,
standard unsupervised methods often struggle in the dense and homogeneous latent spaces produced by
deep representations (e.g., Baron Perez et al. 2025; Li et al. 2025a). E.g., while Etsebeth et al. (2024) suc-
cessfully combined Zoobot (a foundation model discussed in Section 5.1) features with the Astronomaly

framework (Lochner & Bassett 2021) to identify new sources, Walmsley et al. (2022a) found that tailored
anomaly-detection techniques were necessary even within the well-studied Galaxy Zoo dataset. This line
of work culminated in Astronomaly Protege (Lochner & Rudnick 2025), a general-purpose, active anomaly
detection system optimized for exploration in deep latent spaces.

The emergence of deep learning and foundation models (Section 5.1) further elevates the importance of
active learning, the tight integration of human expertise and machine-driven pattern recognition (Lochner
& Rudnick 2025). Self-supervised methods and foundation models promise the ability to generate rich,
general-purpose representations, but expert oversight remains essential to interpret their outputs and as-
sess scientific relevance. Automated systems may flag outliers or cluster data effectively, yet human judg-
ment is required to determine which patterns constitute genuine discovery. As AI systems evolve toward
agentic operation (Section 5.2), the collaboration between human and machine will become increasingly in-
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tertwined. Embedding active-learning capabilities directly within AI infrastructures will therefore be critical to
enable rapid, scalable, and participatory scientific discovery—bridging expert analysis and citizen science
within the LSST era.
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5. Emerging Techniques

The priorities outlined in Section 4 establish the statistical and algorithmic foundations for ML-enabled cos-
mology, but realizing these priorities at the scale and complexity of LSST demands new approaches. Train-
ing distinct models for each science case is neither computationally sustainable nor conducive to the cross-
probe consistency required for joint analyses.

This section surveys two classes of emerging AI techniques that may fundamentally change how DESC
builds and maintains its analysis infrastructure: data FMs (Section 5.1) and LLM-based agentic systems
(Section 5.2). By building general-purpose and reusable models from large unlabeled datasets, data FMs
offer the potential for a shared backbone ML infrastructure that can be applied across science cases, greatly
reducing time to science for analyses involving ML. LLMs and multi-agent systemss (MASs) target a dif-
ferent bottleneck: the coordination of complex workflows, synthesis of documentation and literature, and
accessibility of the DESC software infrastructure to new collaboration members. Together, these tech-
niques provide a framework for scaling the ML efforts in DESC from individual analyses to reproducible,
collaboration-wide pipelines.

5.1. Data Foundation Models

FMs, AI systems trained on massive datasets to perform a broad spectrum of tasks (Bommasani et al.
2021), have not only revolutionized AI research but are also rapidly reshaping modern life. Vision FMs are
now enabling breakthroughs in robotics (Di Palo & Johns 2024), medical diagnostics (Ma et al. 2024), and
remote sensing (Liu et al. 2024). Beyond these applications, their adoption in scientific disciplines such
as genetics (Brixi et al. 2025) and heliophysics (Roy et al. 2025) has highlighted their powerful predictive
capabilities and their capacity to uncover fundamental relationships in complex data. The burgeoning field
of FMs presents a significant opportunity to enable and accelerate cutting-edge astrophysics.

Zoobot (Walmsley et al. 2022b) can be considered the first vision FM in optical astronomy. Having been
trained on labels from the Galaxy Zoo citizen science project (Lintott et al. 2008, 2011; Willett et al. 2013),
it has demonstrated versatility on a range of downstream tasks. These include broad morphological clas-
sification problems critical for studies of galaxy evolution, such as identifying merging galaxies (e.g., Omori
et al. 2023; Margalef-Bentabol et al. 2024b; de Graaff et al. 2025), and anomaly detection for finding rare
phenomena like strong lenses (Euclid Collaboration: Walmsley et al. 2025; Euclid Collaboration: Lines et al.
2025). Formally released in Walmsley et al. (2023), Zoobot has been adapted to imaging data from multiple
surveys, including DESI (Dey et al. 2019), Euclid (Euclid Collaboration: Aussel et al. 2024), HST (O’Ryan
et al. 2023), and James Webb Space Telescope (JWST ) simulations (Margalef-Bentabol et al. 2024a),
among others (Holwerda et al. 2024; Heesters et al. 2025; Omori et al. 2025).

FMs have also been designed for astronomical time-series datasets, spurred by the need for automated
photometric classification of Galactic and extragalactic transients in the Rubin era. Some examples of these
models include Astromer (Donoso-Oliva et al. 2023, 2025), AstroCo (Tan et al. 2025), ATAT (Cabrera-Vives
et al. 2024), FALCO (Zuo et al. 2026), and RoMaE (Zivanovic et al. 2025). While the primary requirement
for these models is high classification accuracy, they also enable the discovery of new classes of transients
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through anomaly detection, and, in some cases, provide lightcurve interpolation for further downstream
analysis.

Despite early successes in modality-specific FMs, many astrophysical questions can only be answered
by fusing different data types. This is a task for which traditional methods, which rely on reducing data
to summary statistics, are quickly being outpaced by powerful multimodal FMs. Though the ideal neural
architectures and training objectives for these multi-modal models are areas of active research, models have
now been developed for galaxies (Parker et al. 2024), SNe (Zhang et al. 2024), variable and non-variable
stars (Leung & Bovy 2024; Rizhko & Bloom 2025), and cosmological simulations (Xia et al. 2025). AION-1
(Parker et al. 2025) represents a significant step toward survey-scale multimodal FMs: trained on over 200
million observations of both stars and galaxies from five major surveys, it integrates images, spectra, and
scalar measurements into a billion-parameter model. AION-1 demonstrates strong performance in low-
data regimes, enables zero-shot detection of rare objects such as strong gravitational lenses, and produces
survey-invariant representations that facilitate knowledge transfer across telescopes.

5.1.1. Foundation Models for DESC Science

Pre-training and reusability —FMs offer a significant advantage over existing techniques by reducing het-
erogeneous data types into a unified and simplified numerical representation known as a latent space,
representation or feature space. Instead of reprocessing a full dataset for each analysis, a single, powerful
FM can generate rich data representations once. These representations can then be used directly or rapidly
finetuned for numerous specific science cases, resulting in significant savings of computing resources.

This shared representational basis also changes how DESC can approach cosmological inference. Tra-
ditional analyses reduce complex image data to limited summary statistics (e.g., moments, colors, or flux
ratios), inevitably discarding information. Deep learning enables direct inference from raw observations,
but training bespoke networks for each task across the petabyte-scale archive of LSST is infeasible. A
general-purpose FM, trained once at scale, can thus act as a reusable “backbone” for all DESC pipelines,
propagating consistent representations across tasks.

For time-domain astronomy, the representations produced by FMs are especially powerful. Because mod-
els learn features directly from the data, they are not constrained by the a priori assumptions of human-
engineered features. This makes them ideal for identifying new or unexpected classes of objects via
anomaly and novelty detection. Furthermore, these representations could be highly effective for standard
tasks such as early transient classification, which is critical for triggering spectroscopic follow-up.

For simulation-based inference (Section 4.1.2), FM latent spaces can act as highly flexible encoders, pro-
viding a more powerful data compression than traditional statistical summaries. In terms of data handling,
multimodal models can naturally accommodate missing data when fusing datasets. Moreover, the ability to
pre-train on vast unlabeled datasets enables FMs to address the representational bias (dataset shift) often
encountered between the training and test sets in supervised learning.

Opportunities offered by multimodality —In astronomy, multi-wavelength models learn a shared latent
space from multiple observational wavelengths (e.g., optical and infrared) of the same object. Multimodal
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models extend this concept by integrating fundamentally different data types into a shared latent space,
often through self-supervised learning techniques. While the specific AI architectures for combining het-
erogeneous datasets remain in active development, all approaches fundamentally treat different data types
as complementary views of the same underlying astrophysical system. The resulting multimodal repre-
sentations provide a computationally efficient and powerful framework for a broad spectrum of scientific
analyses.

In the time domain, joint modeling of photometric light curves and spectra provides a direct path to im-
proving supernova cosmology and our understanding of explosion physics. A multimodal FM can perform
cross-modal imputation, predicting the spectral properties of SNe Ia from irregular photometric sequences
alone (as has been demonstrated on synthetic data; Shen & Gagliano 2025a,b), thereby recovering phys-
ically meaningful features (line velocities or continuum temperatures) that are otherwise inaccessible from
broadband imaging data. These inferred spectra can serve as additional standardization parameters for
SNe Ia, potentially reducing residuals in the Hubble diagram by incorporating information linked to, e.g.,
progenitor diversity (Son et al. 2025) or host metallicity (Childress et al. 2013).

Beyond improving standardization, the same cross-modal embeddings enable proactive discovery. By
comparing inferred to obtained spectra, outliers can be flagged for long-term monitoring. When com-
bined with host-galaxy properties across the transient samples discovered by Rubin LSST, these mod-
els can provide a probabilistic mapping between host galaxy and transient properties, useful for exploring
population-level correlations potentially linked to supernova physics and for obtaining sub-populations of
highly-standardizable SNe Ia.

Challenges —Despite rapid progress, technical and practical challenges must be addressed before mul-
timodal FMs can be fully integrated into DESC pipelines. Propagating observational uncertainties to all
studies conducted downstream of a DESC-wide FM is critical, and the diversity of applications across
spatial and temporal scales may not be well matched to a single architecture’s inductive biases. Multiple
application areas also require capturing the impact of selection effects in extant training samples, which
may cause a model to over-weight well-observed populations and under-represent rare but scientifically
informative objects. A related challenge is ensuring that learned embeddings disentangle instrumental sys-
tematics (e.g., tracking issues, bright sky backgrounds) from true astrophysical signal. Architectures that
explicitly factorize instrumental and astrophysical contributions to observed data offer a promising avenue
(e.g., Audenaert et al. 2025), and further development of such approaches will be essential for meeting
DESC’s calibration requirements.

5.1.2. Training Objectives

Training objectives determine whether FMs learn astrophysically meaningful structure or merely reproduce
observational correlations. For DESC, these objectives must explicitly promote representations that en-
code physical invariants (e.g., morphology–redshift relations, color–temperature gradients) while remaining
robust to the observational systematics and covariate shifts defined as calibratable in the Science Require-
ments Document. Self-supervised Learning (SSL) offers the most practical and scalable route toward this
goal, as it enables the extraction of representations from vast unlabeled datasets without compromising the
requirement for bias quantification and calibration in DESC.
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Self-supervised learning —SSL encompasses a range of approaches: reconstructive methods, such as
autoencoders (Hinton & Zemel 1993; Hinton & Salakhutdinov 2006), learn to compress data into a low-
dimensional representation and then reconstruct the original input; contrastive learning (Chen et al. 2020;
Tian et al. 2021) trains models to produce invariant representations for augmented versions of the same
data point (e.g., zoomed or rotated); and predictive methods, often implemented via transformer architec-
tures (Vaswani et al. 2017), learn by predicting masked or omitted sections of data based on their surround-
ing context. The principal advantage of SSL is its scalability, allowing models to be trained on vast datasets
without costly manual annotation.

Generative approaches —Beyond these paradigms, generative and diffusion-based models are also be-
ing adapted for self-supervised representation learning in the astronomical domain. Although originally
designed for data synthesis, diffusion objectives (Yang et al. 2023) can act as powerful denoisers and
uncertainty estimators, aligning with the DESC requirement that calibratable systematic errors remain sub-
dominant to statistical uncertainties. How to manage a good generative model in the context of galaxy
image synthesis has been investigated for instance using this denoising capability of score-based diffusion
models (Campagne 2025). Hybrid diffusion autoencoders (Preechakul et al. 2021) combine reconstruc-
tive and generative losses, yielding latent spaces that capture astrophysical variation while marginalizing
over observational noise. Methods such as these will be critical for DESC to achieve unbiased shear and
photometric-redshift inference with Rubin data.

Unsupervised learning considerations —As highlighted in Section 4.3, the vast LSST dataset will hold
immense potential for scientific discoveries. Given this sheer scale, FMs will be critical for creating powerful
representations that enable anomaly detection, unsupervised source classification, and similarity searches.
However, a significant challenge remains: FMs are typically designed and optimized for supervised tasks,
while their use for unsupervised applications is often an afterthought. Recent work by Walmsley et al.
(2022a) and Lochner & Rudnick (2025) demonstrates this gap. They found that traditional anomaly detection
methods fail when applied to the deep latent features learned by both supervised and self-supervised
methods. This indicates a clear need for new research: new unsupervised methods compatible with these
features must be developed (such as Astronomaly Protege; Lochner & Rudnick 2025) and FMs must be
optimized specifically for unsupervised discovery.

5.1.3. Architectural Innovations

Realizing the capabilities of FMs for DESC science requires architectural and training advancements.
Astronomical data presents unique barriers to large-scale training, including wide dynamic ranges from
faint to bright objects, Poisson noise properties, multi-wavelength observations, and irregular sampling.
These characteristics, combined with the science priorities of DESC, necessitate architectures that not only
achieve optimal representational power on LSST data but also permit robust uncertainty propagation.

Attention —Efficient attention mechanisms, which allow models to weigh the importance of different parts
of the input data, have evolved significantly beyond standard transformers, offering new architectures that
can scale to LSST-level data volumes. Methods like Flash Attention (Dao et al. 2022) use techniques such
as tiling and kernel fusion to reduce the memory footprint by 10-–100×. This significant reduction for the first
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time makes practical application of attention mechanisms at the scale of individual charge-coupled devices
(CCDs) or rafts.

Hierarchical Approaches —Astronomical data is inherently hierarchical, with structures ranging from in-
dividual galaxies to massive clusters. Sparse attention models like Longformer (Beltagy et al. 2020) and
BigBird (Zaheer et al. 2020) are well-suited to this, as their architecture directly mirrors this physical struc-
ture. They use local attention (e.g., sliding windows) to model interactions between nearby objects, while
global tokens aggregate information about the entire system. These designs are critical for DESC, as
they enable the joint modeling of small- and large-scale correlations essential for controlling systematics in
shear, clustering, and supernova analyses. This hierarchical approach is well-developed in vision models,
with hierarchical vision transformers (e.g., Swin Transformer V2, Liu et al. 2022) being especially promising
for DESC imaging. Unlike the token patterns in sparse models, these architectures use multi-resolution
attention windows that mirror the multi-scale nature of cosmological information, enabling pixel-level PSF
modeling up to large-scale galaxy clustering. This design could enable the unification of weak lensing and
large-scale structure analyses using a shared image encoder. Such a model would facilitate end-to-end
uncertainty propagation across spatial scales, directly addressing the DESC requirement for cross-probe
consistency in systematic control.

Mixture-of-Experts —The principle of a shared, unifying backbone extends to mixture-of-experts (MoE) ar-
chitectures, which offer natural alignment with DESC objectives. Rather than training independent networks
for each object class or redshift regime, sparse MoE layers – such as the Switch Transformer (Fedus et al.
2022) and Mixtral (Jiang et al. 2024) – can dynamically route inputs through specialized sub-networks while
preserving a common latent backbone. This paradigm mirrors the DESC software model itself: probe-
specific inference modules built atop a common analysis infrastructure. E.g., expert sub-networks could
specialize in quiescent versus star-forming galaxies or early- versus late-time transients, while shared la-
tent features will ensure cross-consistency in calibration and selection functions across working groups.

Data Fusion —A final architectural requirement is multimodal data fusion, driven by the operational need
to combine LSST data with a continuous stream of ancillary datasets (e.g., Roman, DESI, 4MOST/TiDES)
as well as managing evolving observing conditions. This challenge can be addressed with early-fusion
models, which tokenize heterogeneous data types into a common representation space for joint training
(e.g., 4M, Chameleon; Mizrahi et al. 2023; Chameleon Team 2024); AION-1 (Parker et al. 2025) exempli-
fies this approach in astronomy, using modality-specific tokenizers to convert images, spectra, and scalar
measurements into discrete tokens before unified transformer-based masked modeling. Alternatively, late-
fusion approaches merge specialized encoders post hoc (Pereira et al. 2023). More generalized architec-
tures, like the Perceiver family (Jaegle et al. 2021a,b), are particularly advantageous. By learning a single,
compressed latent array, they are explicitly designed to flexibly accommodate new data modalities. This
provides a clear operational path for DESC to update and expand its shared analysis space continuously.
For a comprehensive review of fusion strategies and their trade-offs in astronomical applications, see Shao
et al. (2026).

Together, these architectural innovations suggest a coherent design philosophy for DESC FMs: hierar-
chical representations that preserve cosmological structure, modular routing across scientific workflows,
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and learned compression layers capable of cross-probe alignment. Each of these desiderata drive toward
reproducible, uncertainty-aware analyses within a unified DESC software framework.

5.1.4. Evaluation

In contrast to traditional single-purpose ML models trained end-to-end for a specific science objective, FMs
derive their value from serving a broad range of downstream use cases. This generality introduces new
evaluation challenges: it is critical to assess performance across the full spectrum of tasks to which the
FM will be applied, ensuring that it can be successfully adapted to each. In addition, because FMs are
trained on large and difficult-to-characterize datasets, they include implicit biases that must be corrected
for downstream scientific applications. It is therefore important to verify the correctness of adaptation and
calibration procedures for each task. Establishing a common framework of benchmarks to evaluate this
adaptability must be a research priority, particularly given that such validation is not standard practice for
many industry-developed FMs.

Benchmarks —The development or deployment of FMs within the DESC ecosystem should be accom-
panied by a comprehensive suite of benchmarks designed to evaluate predictive performance across a
representative range of science tasks. Particular attention should be paid to robustness under survey sys-
tematics, sensitivity to biases inherited from the FM’s training data, and the ability of adaptation procedures
to yield well-calibrated uncertainties for each downstream application.

Interpretability —Mechanistic interpretability will provide a complementary route to validation. Techniques
such as attention visualization, activation clustering, or sparse dictionary learning can be adapted to
determine whether internal model representations recover known astrophysical relations including the
color–magnitude diagram, the fundamental plane, or the Tully–Fisher relation. Developing astronomy-
specific interpretability tools would enable DESC to quantify whether FMs encode physically meaningful
correlations or merely reproduce empirical correlations.

Distribution shift —Evaluation under distribution shift is also essential for robustness. DESC models must
maintain reliability under temporal drift across survey years, spatial variation in observing conditions, and
transfer to external datasets such as Euclid or Roman. Dedicated stress tests should replace the assump-
tion of independent and identically distributed (IID) validation, using importance-weighted calibration errors
and worst-group accuracy measures to reveal biases that emerge only under covariate change. These
tests will be crucial for ensuring that DESC FMs remain stable as LSST transitions from early to full survey
operations.

Long-term impact —Finally, the deployment of large-scale models must consider sustainability and com-
munity governance. Training and fine-tuning FMs require substantial computational resources, underscor-
ing the need for shared development, standardized documentation, and reproducible training pipelines.
Strategic coordination within DESC and with external collaborations will ensure that these models serve as
transparent, responsible, and scientifically verifiable assets for the next generation of cosmological analysis.
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5.2. Large Language Models & Agentic AI

Large language models (LLMs) have demonstrated an astonishing capacity for performing cognitive tasks
and knowledge work (e.g. synthesizing information, generating text, writing and explaining code) that has
triggered an AI revolution over the past few years. When equipped with tools, LLM-powered agentic sys-
tems go further: they can develop and execute code, perform exploratory data analysis, or orchestrate
multi-step workflows. As of late 2025, complex tasks, especially in software engineering, can increasingly
be delegated to such systems and completed with high accuracy. Although integration into scientific work-
flows remains nascent and faces genuine obstacles, the pace of progress and the potentially transformative
impact of the ability to delegate significant fractions of the research workflow to AI suggests DESC should
plan for how to effectively integrate these tools and guide the evolution of best practices, in line with the
guiding principles in Section 1. The goal of integrating these tools should not be full automation or dehu-
manization, but empowerment: elevating the level at which researchers can engage within the scientific
process, enabling them to tackle more ambitious projects while concentrating on fundamental questions,
critical interpretation, and creative reasoning.
Below, we review the existing capabilities and limitations in the adoption of LLMs for science, and examine
potential applications for DESC, ranging from mature (e.g. documentation assistance) to aspirational (e.g.
AI co-scientists). Overall, this subsection aims to answer the following question: what would successful
integration of LLMs and agentic systems within DESC look like?

5.2.1. From LLMs to Agentic AI

LLMs as knowledge tools —At baseline, LLMs are sophisticated systems for natural language process-
ing. They process, synthesize, and generate text, though they remain subject to hallucinations (i.e. false
statements expressed with confidence), out-of-date knowledge, and limited problem-solving capabilities.
Some of these limitations can be mitigated to engineer reliable production-ready systems using retrieval-
augmented generation (RAG), a technique which allows LLMs to ground their responses using context-
specific documentation (Lewis et al. 2020; Fan et al. 2024). OpenScholar (Asai et al. 2024), for example,
uses RAG over 45 million open-access papers to synthesize citation-backed responses, substantially out-
performing general-purpose models while avoiding hallucinated citations. Over the last year, the proficiency
of LLMs at problem solving has also significantly improved with “reasoning models” (e.g. OpenAI’s o1/o3,
DeepSeek-R1 (Guo et al. 2025)) which allocate additional compute at inference time to perform deliber-
ate, multi-step problem-solving (a paradigm sometimes called test-time compute scaling). These models
show marked improvements on tasks requiring extended chains of reasoning. On physics tasks specifically,
TPBench (Chung et al. 2025) (a benchmark of original theoretical physics problems ranging in difficulty
from undergraduate to research-level) finds that newer reasoning models substantially outperform earlier
systems, though research-level problems remain largely unsolved. This trajectory suggests that LLM capa-
bilities in scientific reasoning will continue to improve, even as fundamental limitations persist. It is important
to note that LLMs alone can inform and assist, but they cannot act: they process information rather than
executing tasks.

Agentic AI: from knowledge to action —Agentic systems represent a conceptual leap beyond individual
LLMs. Where LLMs generate text, agents take actions: writing and executing code, calling APIs, modify-
ing files, and interacting with other computational infrastructure. Where reasoning models are used, these
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agents can also dynamically revise their actions based on feedback and provide interpretable explanations
for their decisions. These capabilities make it possible to delegate complex and loosely-defined tasks to
agents much as one might delegate them to a colleague. However, not all tasks are equivalent, and a
useful mental model is to ask: what could one hand off to a person of varying competency? At the “in-
tern” level, current agentic systems can reliably fix small bugs, run analyses with different parameters, and
write simple tests to verify their outputs or those of another code. At the “junior” level, they can implement
well-specified features or debug failing pipelines. “Senior”-level capabilities (building entirely new software
systems, weighing design trade-offs in solving a specific problem, and validating scientific methodology)
remain largely out of reach at present, though the complexity and execution horizon of these systems con-
tinues to increase. Tools such as Claude Code6, Cursor7, and Devin8 demonstrate agents completing real
software engineering tasks: calling APIs, executing shell commands, maintaining context across dozens
of steps, recovering from errors, and iterating toward solutions. On SWE-bench (Jimenez et al. 2023), a
benchmark of real GitHub issues from open-source Python repositories, leading agents now resolve over
70% of issues in the human-verified subset; on the harder SWE-bench Pro (Deng et al. 2025), which targets
enterprise-level problems, the best systems solve roughly 25%.

Towards Scientific Agentic Systems —Beyond software engineering, agentic systems are increasingly be-
ing applied to scientific research. A first generation of agents has focused on literature search, going beyond
static RAG systems by using tools and iterative refinement. PaperQA2 (Skarlinski et al. 2024), developed
by FutureHouse, exemplifies this approach: rather than simply retrieving from a fixed index, it uses search
tools to find relevant papers, traverses citation graphs to discover related work, and iteratively refines its
own queries based on retrieved text. This agentic approach matches or exceeds PhD-level researchers
on literature retrieval benchmarks. More ambitious systems extend beyond literature search to integrate
data analysis and hypothesis generation. Google DeepMind’s AI co-scientist (Gottweis et al. 2025), a multi-
agent system built on Gemini, uses a “generate, debate, and evolve” approach to produce novel hypothe-
ses; it has identified drug-repurposing candidates for liver fibrosis that were later validated in laboratory
experiments. FutureHouse’s Robin (Essam Ghareeb et al. 2025), an open-source multi-agent system, au-
tonomously proposed ripasudil as a treatment for dry age-related macular degeneration and validated the
hypothesis through wet-lab experiments. Edison Scientific’s Kosmos (Mitchener et al. 2025) orchestrates
parallel data-analysis and literature-search agents over 12-hour runs, producing detailed scientific reports
that independent evaluators found 79% accurate. Sakana AI’s AI Scientist v2 (Yamada et al. 2025) uses
agentic tree search to autonomously generate hypotheses and run experiments, and demonstrated its abil-
ity to run end-to-end machine learning research projects. This list is by no means exhaustive, and these
systems remain by and large proofs-of-concept, with little independent data on their utility and reliability for
real-world complex scientific research. Nonetheless, these examples illustrate both the interest and rapid
advancement in agentic systems for scientific research.

LLM and agentic AI in astronomy —Domain-tuned LLMs such as AstroSage-Llama-3.1-8B (de Haan et al.
2025) demonstrate that compact, astronomy-specific models can match larger general-purpose systems at
lower cost. In parallel, LLMs are enabling large-scale knowledge synthesis: Pathfinder (Iyer et al. 2024) ap-
plies semantic retrieval and citation-aware summarization across ∼350,000 astrophysical papers in the SAO

6 https://code.claude.com/
7 https://cursor.com
8 https://devin.ai/

LSST DESC 60

https://code.claude.com/
https://cursor.com
https://devin.ai/


Astrophysics Data System (ADS), allowing users to move from keyword-centric searches to concept-level
exploration. ChatGaia9 demonstrates the potential for natural-language interfaces to complex astronomical
databases: it translates user queries into ADQL for the Gaia Archive, making ∼2 billion stellar sources ac-
cessible without requiring query-language expertise. Several agentic proofs-of-concept have also emerged.
CMBAgent (Laverick et al. 2024; Xu et al. 2025) coordinates RAG with local code execution to run MCMC
pipelines for cosmological parameter estimation from Atacama Cosmology Telescope (ACT) data. Mephisto
(Sun et al. 2025b) iteratively refines stellar population parameters by orchestrating multi-band galaxy ob-
servations with the CIGALE SED-fitting code (Boquien et al. 2019). Denario (Villaescusa-Navarro et al.
2025) extends this paradigm further, spanning a full research lifecycle from idea generation through data
selection, modeling, and manuscript drafting. These systems remain demonstrations rather than production
tools, with scientific validation of each system’s outputs still performed manually.

As a concrete example of the state of the art, and one directly relevant to DESC, the 2025 NeurIPS Weak
Lensing Uncertainty Challenge10 (a competition to infer cosmological parameters from simulated conver-
gence maps while quantifying uncertainty) was won by a team using the CMBAgent system (Bolliet 2025),
beating a team of domain experts in weak lensing and ML who placed second without AI assistance. The
CMBAgent-assisted team, though not specialists in weak lensing inference, overtook the experts within
weeks and held the lead through the end of the competition. This result illustrates how LLM-based agentic
systems can accelerate scientific research and lower the barrier to complex analysis techniques.

Fundamental limitations —While early successes have shown the promise of LLMs and agentic systems
for science, the current generation of these systems face fundamental constraints that limit their applica-
bility to science. As emphasized by Ilievski et al. (2025), human scientific reasoning relies on abstraction,
causal inference, and conceptual transfer, whereas AI systems depend on statistical interpolation. This
leads to what has been termed “jagged intelligence”: systems that solve Olympiad-level problems while
failing at kindergarten logic, with capabilities forming an uneven landscape rather than a coherent skill set.
Hallucination (generating confident but incorrect outputs) also remains a fundamental problem for scientific
applications of LLMs. Tauman Kalai et al. (2025) provide a theoretical explanation: current training ob-
jectives and evaluation benchmarks structurally incentivize guessing over expressing uncertainty. When a
model says “I don’t know,” benchmarks penalize the response in the same way as the model producing an
incorrect output, so models learn to guess confidently even when uncertain. Hallucinations, as a result, are
a direct consequence of how these systems are trained and evaluated. Hallucinations span a broad taxon-
omy, from factual errors about well-documented knowledge to fabricated citations to arbitrary confabulations
(Ji et al. 2022), and they can be subtle enough to evade casual review. For science, the danger is acute:
a hallucinated statistical result or misremembered prior work could propagate through analysis undetected
if careful validation frameworks are not imposed on model output. Beyond hallucination, these systems
face limitations particularly acute for scientific discovery. They are trained on existing literature and may fail
precisely where discovery happens (at the frontier where established statistical patterns break down). They
also lack reliable uncertainty quantification: unlike a careful scientist who flags when they have extended
beyond their expertise, LLMs produce outputs with uniform confidence regardless of whether they are in-
terpolating within training data or extrapolating beyond it. Finally, complete reproducibility of LLM outputs
remains challenging: outputs are stochastic, sensitive to prompt phrasing, and subject to version drift as

9 https://chatgpt.com/g/g-aYZOjK5zy-chatgaia
10 https://www.codabench.org/competitions/8934/
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underlying models change (challenges that conflict with science’s demand for verifiable, repeatable results).
For all these reasons, human oversight remains essential for science-critical output.

5.2.2. Potential applications for DESC

The following sections organize potential application areas of LLMs by the outcomes they serve for DESC,
rather than by the underlying technology. Each area sits at a different level of technological maturity, and
the path toward realizing each application differs accordingly.

Knowledge work and research support —This is the most mature application area, and the one where
DESC members can immediately benefit. Success in this area would mean that new members can query
DESC documentation in natural language and receive accurate, relevant answers rather than navigating dis-
tributed technical documentation and obscure Slack channels. It would mean that literature search moves
from keywords to concepts, helping researchers find relevant work faster and discover connections across
subfields. Writing assistance for drafts, summaries, and documentation would be readily available, though
always with human review. As summarization capabilities improve, collaboration maintenance (meeting
summaries, cross-working-group communication) could also become increasingly efficient.
The methodology is relatively mature for these tasks. For literature work, tools like OpenScholar, PaperQA2,
and Pathfinder (discussed above) already enable concept-level exploration and synthesis across large sci-
entific corpora. General-purpose LLMs can summarize papers, extract key results, bridge jargon gaps
across subfields, and assist with writing tasks. Domain-tuned models like AstroSage (discussed above)
have shown that compact, astronomy-specific LLMs can match larger general-purpose systems on astro-
physical question-answering at lower cost. RAG techniques allow these systems to ground their responses
in specific documentation, reducing hallucinations and enabling citation of sources.
The path forward for DESC involves building a RAG system over collaboration documentation, tutorials, and
pipeline code; establishing human review guidelines for any generated content; and starting with low-stakes
applications (e.g., onboarding Q&A) before moving to higher-stakes use cases. Looking further ahead, a
retrieval-augmented knowledge graph that unifies documentation, code, and literature could provide a con-
tinuously evolving record of methodological provenance, making it easier to trace how analysis choices
change across the collaboration and how they connect to the broader literature.
The main challenges are hallucination (confident wrong answers erode trust, so citation of sources is essen-
tial), the maintenance burden of keeping RAG indices current as documentation evolves, and establishing
clear guidelines and training procedures for how to use, review, and acknowledge generated content.

Natural language interaction with data —Natural-language interfaces can dramatically reduce the barrier
to accessing complex astronomical databases and archives. Success in this application area would mean
that DESC members can query LSST catalogs, simulation products, and image archives dynamically using
plain language rather than specialized query languages or custom hard-coded scripts. A researcher could
ask “show me all galaxies with strong tidal features in the deep drilling fields” and retrieve relevant candi-
dates without writing SQL or navigating file systems.
At the time of writing, this methodology is now emerging. ChatGaia11 demonstrates that conversational in-

11 https://chatgpt.com/g/g-aYZOjK5zy-chatgaia
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terfaces to catalog data are feasible: it translates natural-language queries into ADQL for the Gaia Archive,
making ∼2 billion stellar sources accessible without query-language expertise. For imaging data, AION-
Search (Koblischke et al. 2024) enables semantic search across 140 million galaxy images by using vision-
language models to generate captions and align image embeddings with text queries, allowing researchers
to search for morphological features or rare phenomena using free-form descriptions rather than predefined
categories.
The path forward for DESC involves building natural-language interfaces to key data products: LSST cat-
alogs, difference imaging outputs, and simulation archives. Such interfaces could be grounded in schema
documentation and example queries to reduce the likelihood of hallucinated or malformed outputs. Tech-
niques for constrained generation offer another avenue for guaranteeing that model outputs adhere to a
pre-defined schema, and research in this area is ongoing (Mündler et al. 2025). Integration into analysis
notebooks would allow seamless transitions between exploratory queries and downstream analysis.
The main challenges to achieving this application area are accuracy (incorrect query translations could
return misleading results), coverage (not all queries map cleanly to database operations), and validation
(users need techniques for verifying that the system understood their intent). For image search, an ad-
ditional challenge is that rare phenomena are precisely where training data is sparse, making retrieval of
scientifically-interesting objects a non-trivial task.

Software engineering acceleration —This area spans two levels of maturity: interactive coding assistance
(mature) and autonomous operation (emerging). Success would mean that DESC developers spend less
time on routine implementation and more time on high-level design and scientific validation. Interactive tools
would help members implement features, fix bugs, and write tests more efficiently. Autonomous agents
would handle low-risk maintenance tasks (updating tutorials when APIs change and package dependen-
cies when softwares do, generating test coverage, fixing CI failures) and open pull requests for human
review. Ultimately, the implementation of new analysis pipelines could also be delegated to agents, with
researchers specifying the requirements and validation tests in natural language.
The methodology for interactive use is already mature. Tools such as Claude Code, Cursor, and GitHub
Copilot are widely deployed and demonstrate real productivity gains on well-specified tasks. Autonomous
operation is less mature: agents can be triggered by CI failures to diagnose issues and propose fixes, but
reliability remains inconsistent for complex, long-horizon problems due to limiting problem-solving abilities
and finite context windows.
The path forward for DESC involves broader adoption of interactive coding assistants for pipeline devel-
opment, along with collaboration-specific contexts tailored to DESC workflows (e.g., LSST data structures,
pipeline conventions, DESC software guidelines). For autonomous agents, the prudent approach is to pilot
these systems first on low-risk tasks such as test generation and docstring updates before integrating them
into CI workflows.
The main challenges are code correctness (agents can introduce subtle bugs, so review and validation re-
mains essential), security (generated code may have vulnerabilities), and institutional knowledge (members
may not understand code they did not write). Observability is also an important point: tracking which agent
and version contributed to each change, and ensuring edits stay limited to the relevant code context rather
than allowing regular rewrites of entire scripts, will more easily enable debugging and auditing.

Analysis support —This area is less mature and requires additional validation infrastructure to be put in
place before deployment should be considered. Success would mean that AI assistants, integrated directly
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into analysis notebooks, help researchers move faster through the exploratory phase of analysis: gener-
ating visualization code from natural-language requests, suggesting statistical tests, and helping iterate on
plots and diagnostics. More ambitiously, such assistants could help construct null tests and systematics
checks, lowering the barrier to rigorous validation while freeing the user to explore additional aspects of
the data. A junior researcher could more easily implement the suite of tests that an experienced analyst
would know to run in a given scientific context, making scientific best practices more accessible and stan-
dardizable beyond individual working groups and across the full collaboration. Beyond individual analysis,
agents could proactively monitor nightly data streams and flag anomalies, generate human-readable QA
summaries, or diagnose pipeline failures. Human-in-the-loop frameworks, where active-learning strategies
solicit expert input only for the most ambiguous cases (Settles 2009; Christiano et al. 2017), could further
optimize the use of limited expert time for monitoring these systems.
The methodology for LLM-enabled analysis support is nascent. While the building blocks exist (code ex-
ecution, RAG, multimodal understanding), integrated systems for scientific analysis support are largely
experimental at present. Projects like Jupyter AI12 provide infrastructure for integrating LLMs directly into
notebook environments, enabling conversational assistance and code generation within analysis workflows,
but robust evaluation frameworks for analysis tasks remain underdeveloped.
The path forward for DESC requires building evaluation benchmarks before deployment: curated test cases
where correct answers are known, so that agent outputs can be validated. Piloting on low-stakes analysis
tasks (e.g., generating diagnostic plots, summarizing pipeline logs) would build experience before moving
to higher-stakes applications. Most importantly, developing clear guidelines for human oversight is critical
to ensuring that researchers remain accountable for scientific conclusions: AI can accelerate the work, but
the responsibility for validating results and interpreting their meaning must stay with humans.
The main challenges are automation bias (over-trusting fluent outputs that may contain subtle errors), the
difficulty of validating agent reasoning on novel analyses, and the risk that diagnostics look valid but miss
real issues. For science-critical workflows, the bar for reliability is high, and current systems do not yet meet
it. There is also an educational tension: critically evaluating AI-generated analysis requires understanding
the underlying methods, yet that understanding has traditionally come from wrestling with implementation
details oneself. If AI removes the friction of implementation, how do junior researchers develop the judg-
ment needed to recognize when the AI is wrong? Training the next generation to use these tools effectively,
without becoming dependent on them, is an open challenge.

Toward an AI co-scientist —This is the most ambitious and speculative application area. Success
would mean an agent capable of PhD-student-level work: running analyses, interpreting results, drafting
manuscript sections, and iterating on feedback with sufficient robustness that a PI could trust the output as
they would a competent junior colleague. Such an agent might surface connections across DESC working
groups that humans miss, generate hypotheses grounded in both literature and data patterns, or systemati-
cally explore parameter spaces or analysis choices that would be tedious for humans to cover. The measure
of success in this area will be in its ability to amplify existing scientific efforts: researchers would report that
these tools help them think more deeply and explore more broadly, not merely execute faster.
The methodology remains largely aspirational. The proofs-of-concept discussed earlier (CMBAgent,
Mephisto, Denario, AI co-scientist, Robin) demonstrate that end-to-end workflow orchestration is possible,
but none has demonstrated PhD-student-level robustness on real scientific problems. Scientific validation

12 https://jupyter-ai.readthedocs.io/
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of their outputs remains entirely manual. Evaluation frameworks are beginning to emerge: Ye et al. (2025)
introduce ReplicationBench, an astrophysics-specific benchmark testing whether agents can faithfully re-
produce published analyses; Gravity-Bench (Koblischke et al. 2025) evaluates agents on physics discovery
tasks, testing their ability to plan experiments and infer physical laws from simulated gravitational systems;
while ScienceBoard (Sun et al. 2025a) and DiscoveryWorld (Jansen et al. 2024) assess compositional sci-
entific reasoning more broadly.
The path forward is necessarily incremental. DESC should build on the higher-maturity applications first
(documentation, coding assistance, data access), developing institutional experience and trust before at-
tempting more autonomous scientific work. DESC-specific evaluation benchmarks, perhaps based on re-
producing known analyses or detecting injected errors, would help measure readiness. Human oversight
must remain central at every stage.
The challenges here are the deepest. Reaching PhD-student-level robustness requires solving the funda-
mental limitations described earlier: agents must know when they are outside their competence, reason
about physics rather than pattern-match on surface features, and produce outputs that are reproducible
with full provenance. The bar for scientific discovery is extraordinarily high. A single undetected error in an
analysis pipeline could propagate into published results and impede progress instead of enabling it. Finally,
proprietary LLMs are trained by companies to be agreeable and affirming; a model valuable for enhancing
scientific discovery should be proactive in challenging the user’s assumptions, critiquing its own outputs,
and pursuing independent (but relevant) lines of inquiry. Whether current architectures can be made reli-
able enough for this level of autonomy, or whether fundamentally new approaches specific to the physical
sciences are needed, remains an open question.

5.2.3. Implementation Considerations

Beyond the application-specific concerns discussed above, three cross-cutting considerations will shape
how DESC integrates these tools: evaluation, governance, and infrastructure.

Evaluation and benchmarking —Benchmarking is essential for improving AI systems, and meaningful
benchmarks can only be created by domain experts who can accurately evaluate the quality of a provided
solution. DESC is well-positioned to contribute here. Benchmarks for DESC applications should measure:
(1) factual accuracy on domain literature and documentation; (2) code validity and runtime safety; (3) repro-
ducibility under random seed variation; and (4) robustness to distribution shift and systematic differences
(e.g., early vs. late LSST years, cross-survey transfers). Existing efforts like ReplicationBench, Gravity-
Bench, and ScienceBoard (discussed above) provide templates for these efforts, but DESC-specific bench-
marks (perhaps based on reproducing published analyses, detecting injected systematics, or validating
pipeline outputs) would directly measure readiness for collaboration-wide use. Establishing such bench-
marks is itself a scientific contribution: it encodes expert knowledge about what problems are worth solving
and provides a foundation for systematic improvement of AI.

Governance and reproducibility —Integrating LLMs into scientific workflows raises unresolved questions
about reproducibility, provenance, and attribution. Each automated workflow should maintain full prove-
nance metadata: prompts, model versions, retrieved sources, generated code, and execution logs. Ob-
servability (logging all agent actions) will enable debugging and audit (Zhou et al. 2025), and increase
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credibility in designed agentic systems. Sandboxed execution environments enforce deterministic behavior
and ensure that agent-generated code runs in secure, auditable contexts. Reproducibility, however, remains
difficult. With the pace of technical improvement rapidly increasing, ensuring that an analysis performed
today can be replicated exactly next year is an open problem. Attribution also lacks established norms:
how should AI tools be credited in publications? Should they be listed as co-authors or as software tools,
and how should their contributions be presented? These questions require collaboration-wide discussion
and policy development, but are extremely topical as papers presenting physics research fully conducted
by LLMs begin to appear (e.g., Schwartz 2026).

Infrastructure and sustainability —The physical deployment of LLMs within DESC must respect both scale
and sustainability. Large models are expensive to run, and the cost-capability trade-off matters for a collab-
oration operating over LSST’s decade-long baseline. Compact open-weight models, fine-tuned on domain-
specific data, offer a path to balancing capability with efficiency while avoiding vendor lock-in—AstroSage
exemplifies this approach. A dedicated RAG layer connecting DESC documentation, simulation archives,
and survey data products could form the backbone of an agentic knowledge infrastructure. But even with
efficient models, infrastructure requires ongoing maintenance: RAG indices must be updated as documen-
tation evolves, prompts need revision as models change, and LLM APIs themselves drift over time. Planning
for this maintenance burden from the outset is essential.

LLMs and agentic systems will not replace scientific judgment, but they may extend researchers’ reach
(handling routine tasks, surfacing relevant literature, accelerating code development) so that human effort
can concentrate where it matters most. Finding the right interaction patterns between scientists and these
systems remains an open challenge. DESC should engage now, building evaluation infrastructure and
piloting lower-risk applications, to be ready as capabilities mature.
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6. Infrastructure Requirements to Support AI/ML in DESC

Infrastructure is the shared technology needed to realize the methods, models, and scientific opportunities
outlined in the preceding sections. It may be deployed in a distributed mode with individuals or small teams
using local or institutional resources, or in a coordinated mode within a shared platform or environment. This
latter mode is most relevant for the largest-scale AI/ML-enabled model training and inference workflows at
the scale of the entire Rubin-LSST data set, including via core infrastructure through DOE-funded high
performance computing facilities in the US. The following subsections review the infrastructure elements
most relevant to the future of AI/ML in DESC.

6.1. Software

Software is foundational to modern cosmology, especially for DESC, where scientific insight increasingly
depends on sophisticated computational workflows. As AI and ML mature into core scientific technologies,
software itself becomes a form of research infrastructure. In this context, two tightly connected priorities
emerge: first, the development and long-term stewardship of a robust AI software stack that enables model
development and experimentation; second, the strategic integration of AI methods into the DESC scien-
tific pipelines, where they will ultimately shape how we reduce data, extract measurements, and perform
inference.

6.1.1. The AI Software Stack

DESC has long demonstrated leadership in scientific software development: from collaboration-wide devel-
opment guidelines13 and software-oriented publication policies, to a culture of reproducibility and sustained
support for collaboration-wide software stacks. As AI becomes a first-class component of scientific analysis,
extending that same discipline and strategic thinking to the AI software ecosystem is increasingly important.
The goal is to define a modern, durable, and interoperable stack built on best practices for reproducibility
and maintainability. This accelerates research while preserving the transparency that has always charac-
terized DESC software.

To meet this goal, we recommend converging on a small set of shared practices and services that make
ML development reproducible, portable to the IN2P3 Computing Centre (CC-IN2P3) and National Energy
Research Scientific Computing Center (NERSC), and sustainable over the 10-year duration of the LSST
survey. Key components include:

• Frameworks for model development, likely PyTorch for large models and JAX for differentiable
physics.

• Experiment tracking, capturing code/data versions, configurations, metrics, and compute environ-
ments to ensure reproducibility.

13 https://lsstdesc.org/assets/pdf/docs/DESC_Coding_Guidelines_latest.pdf
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• Model and artifact registries to version and archive trained models, datasets, and reports, mirroring
survey data-release practices.

• Standardized export formats such as Open Neural Network Exchange (ONNX) so models integrate
cleanly with Rubin/DESC pipelines and high-performance computing (HPC) environments.

• Continuous integration (CI) and continuous delivery/deployment (CD) for models to test and
validate training configurations, exported artifacts, and deployment environments.

• Observability and drift monitoring so ML components used in production behave predictably and
transparently.

These elements are not overhead; they are the operational foundations that allow AI to become reliable
scientific machinery rather than episodic experimentation. They also reduce long-term maintenance burden
by enforcing shared conventions, minimizing bespoke tooling, and allowing learned models to be audited,
reused, and trusted throughout the LSST decade.

In addition to these considerations for ML model development, DESC will increasingly rely on LLMs as
flexible interfaces to data, documentation, and tooling. LLMs are unusual compared to conventional mod-
els in that they are supplied by a rapidly changing ecosystem of commercial providers, open models, and
self-hosted deployments. Versions change frequently, and some use cases may require on-premises or
institutionally-hosted models—e.g., at NERSC, CC-IN2P3, the Cambridge Service for Data Driven Discov-
ery (CSD3), or similar facilities—via serving stacks such as vLLM for data-governance or cost reasons.
To remain agile in this landscape, DESC should treat LLMs as interchangeable backends behind a sta-
ble internal API. Such an abstraction layer enables swapping models without rewriting pipelines and moving
workloads between commercial services and collaboration-owned GPU resources as needs evolve. Beyond
the LLMs themselves, agentic frameworks (libraries that orchestrate multi-step LLM workflows, tool calls,
and human-in-the-loop interactions) are even more volatile, with new options appearing and disappearing
on timescales of months. Frameworks such as LangGraph exemplify the current direction, representing
agents as graphs of tools, memory, and control logic, and providing execution and tracing engines around
them.

Framework sustainability and openness should play an important role in guiding tooling choices. Solutions
with strong governance and broad adoption (e.g., PyTorch under the Linux Foundation, ONNX, MLflow or
self-hostable experiment-tracking systems) provide long-term stability and avoid dependence on proprietary
silos. Finally, coordination with computing partners is essential to ensure portability of the software stack
and deployment on more HPC-aligned facilities.

6.1.2. Integration of AI/ML within Analysis Pipelines

As AI components mature, DESC pipelines may evolve from purely sequential “raw-to-reduced” workflows to
systems where learned models are first-class, production-grade elements. The emphasis is on embedding
AI in ways that enhance measurement fidelity, calibration control, and inference efficiency, while preserving
transparency, reproducibility, and smooth integration with existing practices.
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Data reduction pipelines —AI/ML is already present in DESC workflows (e.g., photo-z estimation within
RAIL). Over time, more components are likely to incorporate learned models at defined stages such as
deblending, PSF estimation, artifact rejection, and photometric calibration, tightly coupled to Rubin/DESC
data structures and HPC execution. In parallel, DESC has interest in end-to-end approaches that optimize
models directly against observational data and simulators, potentially replacing brittle stage boundaries
while maintaining provenance through experiment tracking and model registries.

Foundation Models as Services —With the advent of the foundation model paradigm, we envision the
possibility of providing “X-as-a-service” (photometry, astrometry, cross-matching, classification, anomaly
detection) behind stable APIs, so models can evolve without churn in downstream code.

AI/ML-based cosmological inference —AI-based methods are shifting inference from sampler-centric work-
flows toward models that learn mappings from data to posteriors or summaries. Foundation-style surrogates
can amortize computation and reduce MCMC-heavy workloads, while simulation-based inference trains di-
rectly on forward models and field-level methods operate on minimally reduced data. Active-learning loops
may trigger simulations on the fly to refine surrogates and concentrate the HPC budget where it most
reduces uncertainty. For pipeline use, these elements remain tied to provenance systems and model reg-
istries.

Shared infrastructure for emulators and surrogate models —Consistency across emulator efforts can lower
reuse costs. A lightweight scaffold could include common interfaces (inputs, units, cosmology/observational
context, stochastic controls, uncertainty outputs), a minimal dataset schema for training/evaluation, embed-
ded metadata for provenance and validity domains, and containerized artifacts with dual exports (native
framework and ONNX where feasible). A small validation suite (accuracy, coverage, calibration under shift,
throughput) running in CI on facility images would help with portability to DESC computing facilities, and
hooks for active learning can keep surrogates co-evolving with forward models.

LLMs and agents —Large language models and specialized agents can contribute at multiple levels of
DESC work: in notebook environments as integrated assistants that accelerate iteration on analysis code,
diagnostics, and documentation/query synthesis; in data discovery and curation by searching heteroge-
neous archives and DESC repositories, proposing cross-matches, and flagging anomalies; and at facility
scale by assembling templated workflows, submitting authenticated jobs, and recording outcomes into ex-
periment tracking and model registries. Adoption pairs capability with governance: standardized interfaces
for serving models, authenticated access, audit logs of prompts and actions, and human-in-the-loop check-
points for any decision with scientific impact.

Likely, investment in general-purpose AI tooling across industry, open-source, and public efforts will continue
to exceed resources available for cosmology-specific software. When such tools meet DESC’s scientific and
operational needs, adopting them can leverage broader community advances while allowing collaboration
effort to focus on domain-specific modeling and validation. Finally, AI will also influence our approach to
engaging with computing in the future. Computational infrastructure will increasingly be harnessed with the
assistance of LLMs and agentic frameworks. Depending on how this transition proceeds, it may enable a
larger community of researchers within DESC to engage directly with large-scale scientific computing.
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6.2. Computing

6.2.1. Workflows and Scales

Estimating the full scale of resources needed to support the range of DESC AI/ML use cases is beyond the
scope of this white paper, and any estimates will evolve with time as new methodologies and science appli-
cations are developed. Major resource categories include GPU and CPU time, short- and long-term storage,
and network bandwidth both between and within analysis facilities. AI-oriented workloads will range from
small-scale research & development (R&D) to training and serving FMs, serving tokens for agents/LLMs,
running on-the-fly simulations for active learning loops for SBI, up to potentially running simulations on the
fly as part of explicit inference loops. All of these will bring their own requirements for computing cycles,
data locality and throughput, interactivity, and orchestration.

At the low end of requirements, resource-augmented instances of the commercial cloud-based Rubin Sci-
ence Platform (RSP) would provide an accessible route for individuals and small teams to scale up AI/ML
workflows that require integration with the Rubin data and software stack. For cost efficiency, these re-
sources would likely need to be managed through either a batch-processing system or through an elastic
data-science workflow system. Allocating GPU-based interactive servers (virtual or physical) in the cloud-
based RSP context is unlikely to be viable at scale for many users, given the typical idle time in interactive
sessions and workflows. Larger AI workflows could also be accommodated through individual or DESC-
wide allocations of CPU, GPU, and working storage at NERSC or through proposal-driven allocations under
the 10% of computing time reserved for Rubin science users at the Rubin US Data Facility (USDF) at Stan-
ford Linear Accelerator Center (SLAC).

On the high end, significant computing resources may be needed for new simulations to train simulation-
based inference approaches to large-scale cosmology analyses. This includes not only the computing
needed for simulation but also the storage to save and share large simulation outputs. Another major driver
of resource needs would be training of data-oriented FMs at the scale of the full Rubin data set. Again, an
accurate estimate of the resources needed for this would require further study of an appropriate reference
architecture and training strategy. A rough guide to the scale can be found from the (CPU-based) compute
sizing model for Rubin–LSST Data Release Production14 since it is operating on roughly the same scale of
data as a full-scale LSST-based FM would train on. The operations compute model estimates a need for
about 50M core-hours in year 1 of the survey, rising linearly year over year (assuming annual data releases)
to roughly 10x this amount in year 10. Storage needs are estimated to increase from 30PB in year 1 to over
800PB in year 10 although not all of the associated data products would necessarily be needed for FM
training.

In addition to “offline” computing needs, a number of time-critical AI/ML-driven DESC workflows will be
driven by the nightly alert stream, including ML-driven algorithms for classification, anomaly detection, and
intelligent follow-up observations. Many of these will be implemented within the broker and marshal systems
that receive the LSST alert stream; depending on their level of resource-intensiveness, broker/marshal com-

14 https://dmtn-135.lsst.io
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puting capacity may need to be further augmented, and/or integrated with elastic or preemptive compute
allocations within research computing facilities or in commercial cloud.

6.2.2. Computing Resource Providers

In the US, DESC computing needs are primarily supported by DOE through its network of computing facili-
ties under the Advanced Scientific Computing Research (ASCR) program within the DOE Office of Science.
This includes NERSC as the primary user facility for DESC science analysis, Energy Sciences Network
(ESNet) for advanced wide-area networking and data movement, and the ALCF and OLCF for larger-scale
computational work. ASCR is also developing the HPDF, led by Jefferson Lab in partnership with Lawrence
Berkeley National Laboratory. DOE is also advancing the development of an Integrated Research Infras-
tructure (IRI) to support flexible, powerful, and accessible implementation of scientific workflows across all
these facilities.

Anticipating an increasingly prominent role for AI in the scientific exploitation of data created by Rubin
and other DOE-funded facilities across all disciplines, DOE launched the Genesis Mission in November
202515, a national effort to accelerate AI-driven scientific discovery across its 17 national laboratories.
As infrastructure for this mission, the US Congress has funded the creation of AmSC16 to develop and
deploy the next generation of AI-oriented capabilities on the foundation of the DOE computing platforms
noted above. AmSC development is underway now, with funding distributed across an AmSC infrastructure
component, a core AI model-development consortium (ModCon), pilot funding for discipline-specific data
curation and science benchmarking activities, and seed funding for discipline-specific AI model teams. As a
cornerstone of the Genesis Mission, computing and AI model development infrastructure within the AmSC
represent a significant opportunity to address ambitious DESC AI/ML goals.

The joint NSF–DOE nature of Rubin Observatory opens the possibility of leveraging significant NSF-
supported computing facility resources, especially if pursued in coordination with other Science Collabo-
rations working in areas typically supported by NSF. These resources include the Leadership Class Com-
puting Facility (LCCF) entering production at the Texas Advanced Computing Center. DESC members also
participate in both astrophysics-oriented National Artificial Intelligence Research Institutes, funded jointly by
NSF and the Simons Foundation (SkAI, led by Northwestern University; and CosmicAI, led by the University
of Texas at Austin), and have access to their associated computing resource allocations. Considering inter-
ests in Rubin–Roman–Euclid joint analysis, National Aeronautics and Space Administration (NASA)-funded
computing resources may also be a viable option.

More broadly, many DESC members have access to significant campus-level computing at their institutions.
Members outside the US have access to their own networks of national resources, including national and
regional initiatives prioritizing computing for AI in science. Through the in-kind contribution program that
supports LSST data rights for scientists outside of the US and Chile, a network of IDACs is being deployed,
with some sites bringing additional CPU and GPU capabilities that DESC would be well positioned to make
use of. The UK will host an IDAC, sized to satisfy the resource needs of 20% of the global LSST community
during survey operations. The UK IDAC will be connected to UK national research computing facilities, both

15 https://www.whitehouse.gov/presidential-actions/2025/11/launching-the-genesis-mission/
16 https://science.osti.gov/-/media/grants/pdf/lab-announcements/2025/LAB-25-3555.pdf
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traditional (simulation and modeling) supercomputing services and the coming generation of AI-focused
Digital Research infrastructure currently being specified and prototyped through the ASCEND process17.

Hyperscale commercial enterprises may also offer a viable path for certain novel and ambitious Rubin-
LSST AI/ML applications, provided that their resources can be engaged through partnership or at significant
discount. Potential partners include major cloud providers such as Google, Amazon, and Microsoft; major
AI players such as OpenAI, Anthropic, and (again) Google; and GPU manufacturers such as NVIDIA and
AMD. Additional effort would be required to develop private-sector partnerships that are mutually beneficial
and compatible with the proprietary and non-commercial requirements of the Rubin–LSST data policy18. On
the positive side, timescales in industry are typically much shorter than in academia: work with an engaged
hyperscale commercial partner could potentially deliver large-scale results quickly.

6.3. Data

The primary data products relevant for DESC AI/ML work fall into several categories:

1. LSST data products delivered by Rubin Observatory

2. Derived data products produced through DESC collaboration efforts

3. Data from other major surveys that enhance and expand DESC AI/ML science

4. Simulation data

5. Model weights and biases from AI models trained on the above

Rubin-LSST data products are organized into three categories distinguished by the timescale of their de-
livery. The most immediate data are the world-public alert packets that will be distributed within minutes of
shutter-close, including difference-image detections of transient and variable objects along with associated
postage stamps and (for repeat detections) a 1-year time series. “Prompt products” will be released to the
LSST data-rights community after 24 hours (for catalogs) and 80 hours (for full focal plane images). On a
longer cadence, uniform reprocessing and coaddition across all epochs will deliver annual data releases
of catalogs and images. The alert stream will be distributed via the network of LSST Community Brokers,
while the prompt products and annual data releases will be accessible via the RSP and also available for
bulk download to DESC via the Rubin USDF at SLAC. A workflow based on the Rucio data management
software has been implemented to mirror LSST data to NERSC from the USDF, and could be employed for
staging data at ALCF and OLCF as well.

Other major data sets of interest for cross-match, co-analysis, and multi-modal FM training in conjunc-
tion with Rubin data include: space-based surveys such as Roman, Euclid, the Spectro-Photometer for
the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx), and the Wide-field In-
frared Survey Explorer (WISE); spectroscopic surveys such as the Sloan Digital Sky Survey (SDSS), DESI,
and 4MOST; precursor imaging and time-domain surveys such as DES, the Dark Energy Camera Legacy

17 A Statement of Community Engagement and Needs for Digital Research Infrastructure; see https://engagementhub.ukri.

org/ukri-infrastructure/ascend-process/
18 http://ls.st/RDO-013
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Survey (DECaLS), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), and Zwicky
Transient Facility (ZTF); and CMB data from facilities such as Planck, ACT, the South Pole Telescope (SPT),
and Simons Observatory (SO).

Given the multi-petabyte size of the LSST data (and of simulations and other survey data sets on similar
scales), both network transfer and disk storage will be limiting factors. DESC would likely benefit from
strategic coordination with other LSST science collaborations, LINCC Frameworks (see Section 7), and
IDACs regarding which LSST data products are mirrored where, for how long, at what quality of service, in
conjunction with which CPU and GPU allocations, and for which analysis purposes.

The current Rubin Data Management system was not primarily designed for large-scale AI/ML work. Hence
the data will need to be fitted with additional data interfaces, APIs, and standards that enable efficient use
in this new context, such as the following examples:

• Adoption of tools like the Hyrax framework19 that provides modular components for a full AI/ML
workflow tailored to astrophysical data.

• Large-scale cross-match capabilities such as the Hierarchical Adaptive Tiling Scheme (HATS)20 and
Fink Xmatch21 that are critical to multi-modal dataset construction.

• Performant and scalable services for streaming large batches of image cutouts into AI/ML training
and inference workflows.

• Data tokenization and embedding strategies that are well matched to AI/ML model architectures and
downstream science tasks.

• Active learning frameworks for alerts and images that maximize the value of limited human expert
labeling time with respect to relevant modeling objectives.

In some cases, standards developed by the International Virtual Observatory Alliance22 may be fit for these
purposes in DESC although they are typically conceived around classical astronomy use cases that do not
map onto survey-scale AI/ML.

6.4. Benchmarking and Reproducibility

Challenges of reproducibility will only increase as AI/ML-based analyses become more common. Full com-
putational reproducibility requires infrastructure for versioned retention of all input data, any pre-trained
models used for inference, all analysis code and frameworks, and all software and environment dependen-
cies. Solutions that allow for some or all of the above elements to be mutable over time fall short of true
reproducibility but may be acceptable (or even preferable) to the extent that significant scientific conclusions
remain replicable.

Additional challenges posed by the increasing adoption of AI/ML methods include:

19 https://hyrax.readthedocs.io/en/stable/
20 https://hats.readthedocs.io/en/latest/
21 https://fink-portal.org/xmatch
22 https://www.ivoa.net
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• Defining the role and framework of blind analysis.

• Maintaining independence of different experiments in the context of multi-modal FM-based analyses.

• Defining training, validation, and test data sets when we ultimately want to use the full data set for
cosmological inference.

• Ensuring that any agentic software used or developed to generate DESC science records the prove-
nance of the operations done within its task in ways that are compatible with scientific standards of
reproducibility (explainable AI).

While the above are primarily questions of methodology rather than infrastructure, their solutions will have
implications for infrastructure requirements. Some of the required infrastructure elements may include

• Persistent, accessible storage for testbed datasets, SBI training simulations, and pretrained model
weights.

• Hosted frameworks for deploying and running against science benchmarks.

• Minified production environments that facilitate use of small-scale development instances to develop
methods and benchmarks.

• Standardized APIs and architectures for reproducible large-scale model training and deployment.

• Agentic frameworks for analysis reproduction (e.g., Ye et al. 2025)

• Comprehensive provenance tracking & support for long-term co-archiving of data and analysis.

Our traditional thinking about reproducibility will be further challenged if LLMs and AI agents continue to
move us toward a more natural-language approach to dynamically and interactively extracting understand-
ing from data. This trend can bring about a shift away from the traditionally sequential and siloed model
of “data, pipeline, results as papers” and toward a more dynamic and interactive world characterized by
prompts such as “I want to regenerate the plot in Figure 1 of so-and-so’s paper, except I want the magni-
tude cut at g = 22 rather than g = 23. . . ” Other disciplines will be experiencing similar transitions and DESC
should look for opportunities both to lead by example and to benefit from broader trends and investment.

The vast data scale of LSST has necessitated a fundamental evolution in scientific methodology. This
paradigm shift moves from local data processing on individual researchers’ computers toward analytical
tools designed to operate on shared, high-performance compute platforms. This centralization, combined
with the anticipated widespread adoption of general-purpose foundation models, compels the establishment
of a common implementation framework to ensure scientific analyses are reproducible, consistent, and
interoperable.

While the RSP serves as the primary portal for LSST data access, it was not designed for resource-
intensive, large-scale AI applications. To bridge this gap, the Hyrax framework provides a unified platform
for exploring the latent space of foundation models. However, their operational deployment remains a sig-
nificant undertaking that requires dedicated computational resources and a community-governed process
for selection and validation.
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The rapid pace of innovation in ML means that FMs cannot be considered static, long-term solutions. They
must be constructed for a dynamic life cycle that includes systematic processes for review, evaluation, and
replacement. This agile strategy is critical for all modalities, especially for time-series models deployed on
real-time alert brokers, which must reliably process transient astronomical events to enable rapid discovery.
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7. Opportunities for Broader AI/ML Coordination

DESC does not operate in isolation. The broader scientific impact of AI/ML-enabled analysis will depend
critically on how well we coordinate with the rest of the Rubin ecosystem, other Stage-IV surveys, AI insti-
tutes, and large-scale compute providers. Many of these connections already exist in the form of shared
personnel, joint projects, or informal collaborations. Here, we outline a non-exhaustive snapshot of this
landscape and highlight opportunities to deepen and systematize these links. This section should be read
as a living document: the specific institutes, infrastructures, and programs will evolve over the LSST decade,
but the underlying goal will remain positioning DESC as both a demanding scientific user and an influential
driver of AI methodologies for fundamental science.

Coordination across the Rubin Community —The Rubin LSST survey provides the most immediate oppor-
tunity for DESC coordination. LINCC Frameworks, funded and supported by Schmidt Futures, prioritizes
open-source and cross-project infrastructure for faint object detection, time-series data analysis, and photo-
metric redshift estimation. Beyond producing intermediate Rubin data products that will be used in targeted
ML pipelines, LINCC will serve a key role in maintaining a software ecosystem which has the potential to
substantially accelerate the development of large-scale data foundation models and language models for
science. DESC efforts in the initial years of the LSST survey can benefit LINCC Frameworks in optimizing
its infrastructure toward these goals: for example, by stress-testing the throughput and accuracy of newly re-
leased pipelines and providing benchmark scientific datasets that LINCC can use to develop new detection
and analysis algorithms.

In parallel with DESC, other LSST Science Collaborations are advancing AI methods for science, and coor-
dinated work would accelerate progress. The ISSC brings 150+ scientists from both academic and industry
positions to shared discussions on large-scale data analysis with LSST. The ISSC could run independent
audits of DESC photo-z, shear, and transient pipelines and partner with DESC to explore methodolog-
ical advancements in AI/ML (Section 4). The TVSSC actively develops time-series analysis tools, and
could partner with DESC in stress-testing broker infrastructure and classification benchmarks to evaluate
cosmological readiness using photometric LSST samples. The GSC collaboration could co-develop de-
blending and morphology benchmarks, in order to prevent biases in cosmological inference from mischar-
acterized shear and clustering constraints. The Stars, Milky Way, and Local Volume Science Collaboration
(SMWLVSC) analysis of crowded Milky Way fields will stress test deblending and photometric calibration,
while the Solar System Science Collaboration (SSSC) identification of solar-system objects and bogus
alerts should inform the use in DESC of image products in large-scale scientific models. Across these
collaborations, DESC should also encourage reproducible RSP notebooks, tagged releases, and quar-
terly cross-collaboration readiness reviews in which independent teams reproduce results and report failure
modes, potentially through the Rubin Community Forum23.

Coordination of Stage IV Experiments —Coordination between DESC (on behalf of the Rubin LSST) and
other Stage-IV cosmological experiments will create additional opportunities for mitigating cross-survey
systematics and optimizing the cosmological yield of LSST data.

23 https://community.lsst.org/
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DESI Data Release 2 is expected to contain ∼18.7M spectra across 4,000 deg2 of overlap with the LSST
footprint. This spectroscopic sample can be used as a primary calibrator for LSST redshift and lensing sys-
tematics. DESC should use DESI’s public releases to improve training sets for photometric-redshift models,
require uncertainty coverage checks against those sets, and deploy clustering-redshift cross-correlations to
validate n(z) across tomographic bins. For weak lensing, DESC could cross-correlate LSST shear measure-
ments with DESI density fields and test magnification and selection effects with controlled changes in DESI
target completeness and fiber-assignment weights. The 4MOST TiDES program (Frohmaier et al. 2025)
will provide ∼ 30, 000 spectroscopic transients. These data will enable real-time validation of classification
algorithms and a sub-2% measurement of the dark energy equation of state. The TiDES survey will also
produce >200,000 spectroscopically-confirmed transient host galaxies, providing valuable contextual infor-
mation for characterizing and marginalizing over environmental differences when curating standardizable
SN Ia samples. DESC could leverage these correlations to improve its survey simulations of the extragalac-
tic time-domain sky in successors of the PLAsTiCC and ELAsTiCC challenges. Coordination within the
Roman Space Telescope presents possibly the most transformative opportunity for DESC. The OpenUni-
verse2024 simulations (∼70 deg2, ∼400 TB publicly available; OpenUniverse et al. 2025) enable immediate
testing of how Roman’s infrared imaging and superior resolution can be used for full multi-wavelength char-
acterization of static sources in a joint data foundation model. Roman will also reveal blends invisible in
Rubin data, allowing for validation of existing deblending/image segmentation methods for Rubin. Char-
acterization with the high-redshift SN Ia population in Roman will also provide a laboratory for exploring
any redshift-dependent systematics (e.g., changes in progenitor properties across cosmic time) that should
be included in DESC cosmological analysis pipelines. In addition, Schmidt Sciences announced in Jan-
uary 2026 the Eric and Wendy Schmidt Observatory System, a privately funded “system-of-observatories”
designed for open-access time-domain and multi-messenger science complementary to LSST. The sys-
tem comprises four facilities: the Argus Array (Law et al. 2022), a ∼900-telescope optical array delivering
∼8,000 deg2 instantaneous field of view with cadences down to ∼1 s; the Deep Synoptic Array (DSA; Hal-
linan et al. 2019), a 1650×6.15 m dish radio interferometer spanning 0.7–2 GHz with real-time imaging;
the Large Fiber Array Spectroscopic Telescope (LFAST; Berkson et al. 2024), a scalable fiber-fed array
of 0.76 m unit telescopes targeting ELT-class collecting area for photon-starved spectroscopy and rapid
follow-up; and the Lazuli Space Observatory (Roy et al. 2026), a 3 m rapid-response optical–NIR facility
(400–1700 nm) in lunar-resonant orbit with a wide-field imager and integral-field spectrograph capable of
responding to targets of opportunity in <4 hours. With planned operations beginning as early as 2029
and a commitment to open data and shared analysis tools, this privately funded infrastructure could pro-
vide valuable cross-wavelength and high-cadence coverage for DESC time-domain and multi-messenger
science, particularly for SN Ia cosmology and transient follow-up. As private investment in astronomical
infrastructure grows, DESC should monitor these developments for coordination opportunities.

Coordination with AI Institutes —Two NSF-Simons AI institutes have been launched as of September 2024,
with funding and explicit scientific themes targeting LSST and cosmology. The SkAI Institute between North-
western, University of Illinois, and University of Chicago, is developing an FM for transient science that can
serve as a precursor to upcoming DESC models. CosmicAI at the University of Texas at Austin is developing
LLM-powered AI “copilots” for research. These efforts create opportunities for DESC members to identify
DESC pipelines most amenable to automation and provide CosmicAI with datasets for beta testing of their
models. Across MIT, Harvard, Northeastern, and Tufts Universities, the NSF Institute for Artificial Intelli-
gence and Fundamental Interactions (IAIFI) has also explored the use of generative models for field-level
inference and multi-modal foundation models for transient science, which DESC can validate with synthetic
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Rubin datasets such as CosmoDC2 (Korytov et al. 2019) and PLAsTiCC/ELAsTiCC (PLAsTiCC team et al.
2018; Narayan & ELAsTiCC Team 2023). Further, the focus of DESC on AI integration at multiple stages of
data processing will benefit the efforts of these institutes in incorporating realistic atmospheric effects and
detector systematics directly into model architectures.

A feasible path toward training generalizable FMs for cosmology is to split the work. Models could be proto-
typed at individual universities or AI Institutes with support from LINCC Frameworks, and scaled through the
pre-training of backbones on national and European supercomputers (pooled across DOE and EuroHPC
facilities), since this will likely require hundreds of GPUs and training across multiple days. The models
could then be fine-tuned and calibrated near the data on DESC computing facilities such asNERSC, with
brokers providing smaller fine-tuned heads as software filters for targeted streaming objectives.

A primary bottleneck to achieving this widespread scientific coordination is the development of robust, well-
documented, and well-maintained software infrastructure. LINCC Frameworks, supported by the Schmidt
Sciences, provides this support for the Rubin Observatory LSST, but this should be equally supported
across all major observatories and international collaborations such as DESC in the coming years to enable
the emerging technologies outlined in Section 5.

Coordination with European Networks —EuCAIF coordinates AI infrastructure and research across Eu-
ropean institutions, and has produced white papers on infrastructure needs (e.g., Caron et al. 2025), and
LLMs/FMs (Barman et al. 2025). DESC members at European institutions can, for instance, join EuCAIF
WG4 (machine learning and artificial intelligence infrastructure) to contribute cosmology-specific challenges
to EuCAIF’s methods repository, or WG1 (foundation models & discovery) to coordinate the development of
FMs. These connections may facilitate successful applications for EuroHPC resources where DESC could
test whether cutting-edge architectures will scale to LSST volumes. EuroHPC systems (Leonardo with
240 petaflops on NVIDIA A100 GPUs, LUMI with 380 petaflops on AMD MI250x GPUs, or the exascale
JUPITER with NVIDIA GH200 superchips) enable training foundation models on billions of galaxy images,
computationally infeasible on current NERSC allocations. These systems are already being deployed in
astrophysics as a testbed for exascale and GPU-optimized implementations of simulation codes (see e.g.
Shukla et al. 2025; Lacopo et al. 2026). EuroHPC access follows a staged pathway from Benchmark (test-
ing code scaling) to Development (algorithm validation) to Extreme Scale (production runs of up to 8M GPU
hours). DESC could pursue Benchmark Access to validate early algorithms before committing to larger
allocations.

Collaborations with Industry —Tech partnerships can provide expertise, computational resources, and op-
portunities to stress-test DESC methods at scale. NVIDIA’s Academic Grant Program, along with comple-
mentary access through Google Cloud and Amazon Web Services, could allow DESC to rapidly prototype
architectures and objective functions for foundation models at LSST scale.

Partnerships between DESC and LLM providers (e.g., Anthropic, OpenAI) should also be encouraged.
Research credits would allow DESC to simultaneously explore the strengths and failure modes of the current
generation of models. This compute could also be used to conduct systematic benchmarking of these
models (through, e.g., HuggingFace) on targeted, science-specific use-cases. Any formal arrangement
for LLM use across DESC would need to comply with LSST data rights policies (e.g., through private
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networking, complete audit trails, and explicit no-train/no-retain clauses). Such an arrangement would yield
reproducible evaluation suites that could serve as a case study of language model readiness for science
applications.

Rubin Alert Brokers —The seven full-stream Rubin alert brokers are ALeRCE (Förster et al. 2021), AMPEL
(Nordin et al. 2019), ANTARES (Matheson et al. 2021), Babamul (Jegou du Laz et al. 2025), Fink (Möller
et al. 2021), Lasair (Smith et al. 2019), and Pitt-Google. These systems provide the primary filtering layer
between Rubin streams and science-specific transient samples, turning raw alerts into ranked candidates,
host associations, and early labels that will drive spectroscopic follow up and downstream analyses. Tight
coordination with these brokers will give DESC direct leverage over the quantities that contribute to cosmo-
logical systematics: the completeness and purity of SN Ia samples, characterization of selection effects,
and calibration of host-galaxy priors. Characterizing the selection functions of alert brokers as part of the
analysis pipeline will help align transient discovery with the DESC requirements.

Brokers should maintain rigorous provenance tracking for all derived data features, host-galaxy associa-
tions, and classification/anomaly scores so that DESC can understand the selection effects of deployed
algorithms. In return, collaboration with DESC can provide the alert brokers with benchmark datasets and
the targeted science objectives used to validate their infrastructure and foster additional software devel-
opment. Algorithms developed in the early years of the Rubin LSST can be ported upstream to broker
environments after public release, providing additional metadata (e.g., embeddings from a data foundation
model or concise, text-based descriptions of a subset of high-priority alerts) and allowing the broader sci-
entific community and all Science Collaborations to benefit from DESC efforts without violating LSST data
rights policies.
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8. Risks, Challenges, and Mitigation Strategies for AI/ML in DESC

The increasing reliance on AI/ML within DESC brings not only opportunities but also a set of technical,
organizational, and societal risks that must be managed deliberately. The aim is not to discourage the use
of AI, but to ensure that methods are deployed in ways that are scientifically robust, sustainable over the
LSST decade of operations, compatible with DESC’s standards for transparency and reproducibility and
with the broader scientific and educational aims of DESC. Below we highlight key challenge areas together
with concrete mitigation strategies.

Methodological Robustness and Interpretability —AI/ML models trained directly on data are vulnerable to
familiar statistical pitfalls: biased or incomplete training data, overfitting (Huppenkothen et al. 2023; Smith
& Geach 2023), and domain mismatch between simulations and real survey data (Ćiprijanović et al. 2023;
Pandya et al. 2025a). For methods that sit close to top-level cosmological inferences, there is a justified
reluctance to adopt “black-box” results as reference constraints unless they can be thoroughly validated and
stress-tested. This is amplified for neural summary statistics and learned emulators (Villaescusa-Navarro
et al. 2022; Huppenkothen et al. 2023; Smith & Geach 2023), where it can be difficult to diagnose failure
modes or to construct transparent null tests. There is also a subtle “ML-only” risk: some future analyses
will be so data- and compute-intensive that no independent non-ML cross-check is feasible, making it even
more important that AI-based pipelines be internally well understood and stress-tested.
From a DESC perspective, mitigation rests on explicit validation and interpretability practices: (i) defining
standardized simulation and challenge suites where AI and traditional methods are compared head-to-head
in the regime where both are applicable; (ii) publishing diagnostic plots and ablation studies that isolate
which data features drive the constraints; (iii) requiring explicit documentation of model training domains,
assumptions, and known failure modes, and discouraging use outside those regimes; (iv) developing ap-
proximate surrogate models or interpretable summaries (e.g., response functions, feature attributions) that
can be inspected by domain experts; and (v) encouraging redundancy where it matters most—for exam-
ple, using different architectures, loss functions, or simulation pipelines to cross-check key inferences, even
when all are “AI-based”. Any AI-based result used as a reference cosmological constraint should be accom-
panied by a documented validation program and, where possible, benchmarked against simpler baselines.
We recognize that imposing these higher standards carries a non-negligible human effort cost, which in
turn creates a natural opportunity for agentic AI systems to automate parts of the validation workflow and
thereby reduce that burden.

Provenance, Reproducibility, and Integration into Pipelines —As analyses become more complex, certifying
full provenance (from raw data through simulations, training runs, and model selection) becomes harder but
more important. If DESC cosmology results depend on opaque training pipelines, unversioned models,
or undocumented hyperparameters, small bugs or biases can consume a non-negligible fraction of the
“tension budget” in precision tests of ΛCDM. While these issues are common to most long-term software
infrastructures, the rapid pace of methodological advancement in AI/ML hinders provenance tracking, and
the stochastic nature of most neural network training can prevent complete reproducibility. There is also
the practical challenge of integrating AI components into mature pipelines that already rely on well-tested
codes.
Mitigation here is largely infrastructural and procedural: (i) treat trained models as first-class data products,
with versioning, metadata, and model cards describing training data, objectives, and known limitations; (ii)
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require that AI components be runnable from containerized environments and integrated into CI pipelines
with regression tests; (iii) maintain “shadow” implementations (simpler, slower, or more traditional pipelines)
for cross-checks where feasible; and (iv) define clear deprecation and maintenance policies so that AI
dependencies do not become unmaintainable over the survey lifetime.

Safe Usage, Data Rights, and External Services —Widespread availability of commercial LLMs and AI
services lowers the barrier to experimentation but introduces new questions about data governance and
safe usage. Uploading proprietary Rubin/DESC data or unpublished results to third-party services may raise
data-rights concerns, and using off-the-shelf models without understanding their limitations can encourage
application of techniques outside their domain of validity.
DESC can mitigate these issues by (i) establishing clear guidelines on what kinds of data and metadata may
be used with external services, in coordination with Rubin, LSST Discovery Alliance (LSST-DA), and agency
policies; (ii) prioritizing self-hosted or collaboration-controlled deployments (e.g., for LLMs and inference
services) for sensitive workloads; and (iii) prioritizing services committed to long term availability of their AI
models and transparent versioning of these models, for long term reproducibility.

Human Capital, Training, and Sustainability —AI/ML tools (and, increasingly, agentic assistants) can accel-
erate research by automating repetitive tasks and lowering the barrier to entry for complex workflows. How-
ever, there is a real risk that early-career researchers learn to operate pipelines as “black boxes” or solely
by prompt engineering, without acquiring a deep understanding of the underlying statistics and physics, and
thus weakening long-term scientific literacy and even cognitive abilities (Kosmyna et al. 2025; Trotta 2025).
DESC can turn this into an opportunity by (i) framing AI/ML training as an integral part of graduate and
postdoctoral education, combining hands-on use of tools with explicit coverage of underlying concepts; (ii)
pairing students with mentors who can help them “open the box” at least once (e.g., by reproducing a result
from scratch or implementing a simplified version of a method); (iii) encouraging contributions to shared,
well-documented libraries rather than bespoke one-off scripts, spreading maintenance across the collab-
oration and ensuring that successful methods become communal assets; and (iv) explicitly furthering a
scientific culture that does not unduly favor efficiency and speed over in-depth engagement with modeling
and creative thinking.

Environmental Impact —Large-scale adoption of AI/ML methods comes with significant environmental im-
pact: data centers and computing farms are energy intensive, water hungry, and have generally a negative
environmental impact in terms of land usage, noise and e-waste production. The first step toward an
environmentally sustainable practice for DESC is to quantify the computing resources used in AI/ML devel-
opment. This should cover not just the training, validation and deployment costs for methods presented in
a research paper (as is common practice), but also track the computational expenditure for hyperparameter
search, failed tests, aborted training runs and architectural dead-ends – which often dwarf the compute
needed for the ultimate implementation.
To this end, DESC needs to develop easy-to-use, adaptable and constantly reviewed guidelines regarding
how to log and report transparently such computational costs, so as to monitor compute usage in DESC
over the lifetime of LSST. Taking advantage of more energy-friendly implementations (both software and
hardware) should also be encouraged, while training on the matter should be available to all DESC mem-
bers.
Detailed evaluations of astronomy-specific activities in terms of their carbon footprints are scarce, and usu-
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ally limited to research infrastructure (see, e.g., Knödlseder 2025). Stevens et al. (2020) find that even be-
fore the rise of AI/ML, supercomputer usage already accounted for the majority of Australian astronomers’
carbon footprint. However, compute-related carbon emissions are but one aspect of the multi-faceted en-
vironmental impact of AI/ML, which remains understudied. It would be desirable to address this gap by
developing in-depth evaluations of the wider environmental cost of LSST-related AI/ML usage, as a way to
support sustainability alongside scientific gains (Bashir et al. 2024).

Computing Resources and Infrastructure —Realizing the full potential of AI/ML within DESC will place non-
trivial demands on computing resources. Training large foundation models for images, catalogs, or time
series, and running large-scale simulation-based inference, require sustained access to GPU clusters at a
scale beyond traditional analysis workloads. Similarly, if DESC wishes to host its own LLMs or other gener-
ative models for work involving sensitive or proprietary data, these services will need reliable, secure GPU
backends and operational support over many years. Without careful planning, AI workloads risk competing
destructively with other science uses for scarce accelerators, or fragmenting into ad hoc deployments that
are hard to maintain.
Mitigation here is primarily strategic: (i) aligning major AI training campaigns with DESC’s existing resource-
allocation processes and external partners (e.g., LSST-DA, national and international HPC centers); (ii) pri-
oritizing shared, reusable models and services over one-off experiments; (iii) investing in efficient training
and inference schemes (e.g., parameter-efficient finetuning, mixed precision, model distillation); and (iv)
treating any self-hosted LLM or foundation-model service as collaboration infrastructure, with clear policies
on access, data governance, and long-term support.

Overall, the main risks associated with AI/ML in DESC are not existential but operational : biases that
are hard to diagnose, results that are difficult to reproduce, methods that are fragile under domain shift,
and human capital that is either over- or under-reliant on automation. By treating AI components with the
same methodological rigor as any other part of the cosmology pipeline requiring validation, documentation,
governance, and training, DESC can reap the benefits of these tools while keeping these risks manageable.
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9. Summary and Conclusion

The Vera C. Rubin Observatory LSST will generate heterogeneous data at a scale and complexity that
strain traditional analysis pipelines. DESC’s mission is to convert these data into robust constraints on the
dark sector, which demands methods that are statistically powerful, scalable, and operationally reliable.
AI/ML, from NDE for photo-zs to SBI and generative models for field-level cosmology, have already demon-
strated that they can address key bottlenecks in this program. At the same time, their utility for precision
cosmology hinges on trustworthy UQ, explicit treatment of model misspecification and covariate shift, and
fully reproducible integration into DESC workflows.

Section 3 and Section 4 demonstrate that DESC is at the forefront of cutting-edge machine learning appli-
cations in astronomy. Research into machine learning is now integral to the primary LSST cosmological
probes—including strong and weak lensing, supernovae, galaxy clusters, and large-scale structure—as
well as cross-cutting topics such as theory, photometric redshifts, simulations, and deblending. Across
DESC working groups and the broader cosmology community, several critical themes and methodologies
have crystallized:

• Simulation-Based Inference (SBI): SBI has emerged as a powerful methodology, enabling anal-
yses of a complexity that typically exceeds the capabilities of traditional forward modeling. This
domain offers fertile ground for machine learning research, particularly in the development of emula-
tors to accelerate pipeline components and in extending analyses beyond traditional point statistics.
However, SBI remains sensitive to model misspecification, lossy summaries and inaccurate posterior
approximations, problems which are particularly challenging to solve in a machine learning paradigm.

• Bayesian Methodology and Uncertainty Quantification (UQ): While Bayesian frameworks are
ubiquitous in cosmology, machine learning is increasingly being explored to accelerate Bayesian
inference on LSST-scale datasets that would otherwise be computationally intractable. Furthermore,
the high precision required by cosmology requires accurate uncertainty estimates that go beyond
common practice in machine learning. Building on the application of Bayesian neural networks and
related methods, DESC is well positioned to drive fundamental developments in this area.

• Validation and Benchmarking: For cosmology, rigorous validation is paramount. Algorithms must
not only be accurate and unbiased but also capable of correctly propagating uncertainty. Covariate
shift, inevitable in many supervised learning contexts, must be mitigated through accurate simula-
tions and techniques for domain adaptation. Benchmarking and validation are particularly important
for algorithms used in products intended for broad usage, such as FMs and simulations. The RAIL
project (see Section 3.1), developed by DESC specifically to benchmark photometric redshift algo-
rithms, serves as an excellent model for such validation frameworks.

• Active Learning and Discovery: Active learning has become an essential part of machine learning
and will be crucial in managing LSST data. The RESSPECT project (see Section 3.5), a collabora-
tive initiative developing an active learning pipeline for transient classification, is an example of the
comprehensive infrastructure required for effective active learning. Furthermore, human-in-the-loop
workflows will be vital for anomaly detection and the identification of rare phenomena within the vast
LSST dataset, facilitating novel discoveries that purely automated systems might overlook.
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Realizing this potential requires DESC to treat AI/ML as primary components of the measurement pipeline.
Section 6–8 of this paper outline the software, computing, and data infrastructure required to support AI/ML
at scale. Sustainable integration of emerging tools requires a shared AI software stack, containerized and
RSP-compatible workflows, a DESC Data Registry for model and data products, and benchmark suites
that tie model performance directly to cosmological and systematic-error budgets (see Section 6). These
methods also present opportunities for broader coordination with Rubin operations, community brokers,
external AI/ML institutes, and industry, which we outline in Section 7, but present risks ranging from model
miscalibration and covariate shift to data rights compliance, environmental cost, and the erosion of human
oversight (see Section 7).

On the basis of these insights, we have defined a series of recommendations (R1–R15) and opportunities
(O1–O5) in the Executive Summary (Section 1), spanning methodological research, foundation models,
LLMs and agentic AI, infrastructure and software, organizational coordination, human capital, and external
partnerships. Implementing these recommendations would position DESC to use AI/ML for ambitious and
disciplined science. LSST-era cosmology will be limited not by a lack of algorithms, but by our ability to
validate, govern, and integrate them. By investing in that infrastructure now, DESC can shape how AI
is used for precision cosmology and set a standard for its responsible deployment across the physical
sciences.

A. Index of AI/ML Methodologies and Challenges

AI/ML Methods Index

Bayesian hierarchical modeling: Hierarchical probabilistic models that share information across objects
or populations. 18, 24, 27, 28, 42

Deep ensembles: Collections of models combined for improved performance and UQ. 28, 35

Gaussian processes: Non-parametric Bayesian regression and emulation for scalar or functional outputs.
18, 21, 28, 32, 42

Neural density estimation (NDE): Neural networks trained to approximate probability densities, often
used within SBI. 18

Neural posterior estimation (NPE): Direct neural approximation to the posterior distribution over param-
eters given simulated data. 36, 45

Simulation-based inference (SBI): Implicit-likelihood Bayesian inference using forward simulations and
NDE techniques. 21, 24, 27, 28, 32, 33, 38, 45, 47

Variational inference (VI): Optimization-based approach to approximating posterior distributions. 21, 42

Convolutional neural networks (CNNs): Convolution-based neural networks for image-like data, widely
used for classification and regression. 21, 27, 36
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Deep neural networks: Generic deep learning architectures not otherwise categorized. 38

Graph neural networks (GNNs): Neural networks designed to operate on graph-structured data, such as
cosmic webs or halo catalogs. 33, 35

Recurrent neural networks (RNNs): Sequence models (e.g. LSTMs, GRUs) for time series and light
curves. 21, 28

Transformers: Attention-based neural architectures for sequences, time series, or generic sets of tokens
(including vision transformers). 18, 21, 28, 35

Diffusion / score-based models: Generative models that iteratively denoise data from a noise process,
often used for images and fields. 18, 21, 24, 33, 36, 49

Emulators: Surrogate models (often Gaussian process- or neural network-based) that approximate ex-
pensive simulations or likelihoods. 18, 32, 33

Neural surrogates: Neural network models trained to mimic the input–output behavior of complex physical
simulations. 18, 32, 49

Normalizing flows: Invertible neural networks used as flexible density models in likelihoods, posteriors, or
simulators. 36, 45, 49

Variational autoencoders (VAEs): Latent-variable generative models trained via VI. 28, 36

Differentiable programming: Formulation of simulations and models as differentiable programs
amenable to gradient-based inference. 24, 32, 33, 38, 49

Physics-informed ML: Machine learning models that incorporate physical laws or constraints (e.g.,
PINNs, ENNs). 50

Symbolic regression: Learning analytic mathematical expressions that describe data or physical relation-
ships. 32

Active learning: Strategies that adaptively select the most informative data points for labeling or follow-up.
28, 35, 51

Anomaly detection: Identifying rare or out-of-distribution examples in data, crucial for new physics dis-
covery. 28, 51

Neural compression: Learned low-dimensional representations (summary statistics or latents) of com-
plex data. 24

Self-organizing maps (SOMs): Topology-preserving maps used for exploratory analysis and domain cov-
erage characterization. 18, 36

Self-supervised learning: Learning representations from unlabeled data by solving pretext tasks (e.g.,
masking, contrastive learning). 35, 51

Instance segmentation: Pixel-level segmentation of individual objects, relevant for deblending crowded
scenes. 36

Object detection: Identifying and localizing objects in images (e.g., YOLO). 27, 36
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Cross-cutting Challenges Index

Covariate Shifts: Distribution mismatches between training and target data (e.g. spectroscopic selection
bias, sim-to-real gaps, model misspecification). Addressed in Section 4.1.3, Section 4.2.1, and
Section 4.3. 18, 21, 24, 27, 28, 32, 33, 35, 38, 47, 49, 50, 51

Metrics & Evaluation: Task-relevant metrics, validation frameworks, benchmarking, and stress tests for
DESC science. Addressed in Section 4.1.4 and Section 4.2.2. 18, 33, 36, 48, 50

Scalability: Handling LSST-scale data volumes, real-time alert processing, and high-dimensional infer-
ence. Addressed in Section 4.1.1, Section 4.1.2, and Section 4.2.1. 18, 24, 27, 28, 32, 33, 35, 38,
42, 45, 49

Data Sparsity & Rare Events: Limited labeled samples, rare transients, class imbalance, and challenging
edge cases like blending. Addressed in Section 4.3. 21, 28, 35, 36, 38, 51

Uncertainty Quantification: Obtaining well-calibrated posteriors and propagating uncertainties to cosmo-
logical constraints. Addressed in Section 4.1.1, Section 4.1.2, and Section 4.1.4. 18, 21, 24, 27, 28,
35, 36, 38, 42, 45, 48

B. Glossary of Acronyms

Acronyms and Abbreviations

ΛCDM: cold dark matter with cosmological constant. 80

wCDM: cold dark matter with cosmological equation of state. 25, 32

4MOST: 4-meter Multi-Object Spectroscopic Telescope. 11, 16, 30, 57, 72, 77

ACT: Atacama Cosmology Telescope. 61, 73

ADQL: Astronomical Data Query Language. 61, 63

ADS: SAO Astrophysics Data System. 60

AGN: active galactic nuclei. 22

AGNSC: Active Galactic Nuclei Science Collaboration. 11

AI: artificial intelligence. 8, 13, 18, 21, 22, 30, 32, 34, 35, 37, 40, 41, 49, 50, 51, 53, 59, 61, 63, 64, 65, 66,
67, 70, 72, 73, 76, 80, 83

ALCF: Argonne Leadership Computing Facility. 16, 71, 72

ALeRCE: Automatic Learning for the Rapid Classification of Events. 31, 79

ALMA: Atacama Large Millimeter Array. 23

AMPEL: Alert Management, Photometry, and Evaluation of Light curves. 31, 79

AmSC: American Science Cloud. 10, 16, 71
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AnaCal: Analytic Calibration. 38

ANTARES: Arizona–NOIRLab Temporal Analysis and Response to Events System. 31, 79

API: application programming interface. 16, 21, 33, 59, 60, 66, 68, 69, 73, 74

ASCEND: A Statement of Community Engagement and Needs for Digital Research Infrastructure. 72

ASCR: Advanced Scientific Computing Research. 71

BLISS: Bayesian Light Source Separator. 37

BNN: Bayesian neural network. 23, 29, 46

CAMB: Code for Anisotropies in the Microwave Background. 33

CANDELS: Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. 37

CC-IN2P3: IN2P3 Computing Centre. 67

CCD: charge-coupled device. 57

CD: continuous delivery/deployment. 68

CI: continuous integration. 63, 68, 81

CIGALE: Code Investigating GALaxy Evolution. 61

CLMM: Cluster Lens Mass Modeling tool. 27

CMB: cosmic microwave background. 22, 73

CMNN: color-matched nearest-neighbors. 19

CNN: convolutional neural network. 22, 24, 31, 37

CosmoDC2: Cosmological Data Challenge 2. 9, 78

CPU: central processing unit. 70, 71, 73

CSD3: Cambridge Service for Data Driven Discovery. 68

CSP: Carnegie Supernova Project. 44

DECaLS: Dark Energy Camera Legacy Survey. 72

DeepDISC: Detection, Instance Segmentation, and Classification with Deep Learning. 19, 37, 39

DES: Dark Energy Survey. 20, 23, 26, 29, 36, 72

DESC: Dark Energy Science Collaboration. 8, 13, 18, 22, 26, 27, 28, 32, 35, 36, 38, 40, 41, 43, 48, 51,
53, 54, 59, 61, 62, 63, 64, 65, 66, 67, 70, 72, 74, 76, 80, 83

DESI: Dark Energy Spectroscopic Instrument. 11, 16, 53, 57, 72, 77

DNF: directional neighborhood fitting. 19

DOE: Department of Energy. 10, 67, 71, 78

DSPS: Differentiable Stellar Population Synthesis. 34
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ELAsTiCC: Extended LSST Astronomical Time Series Classification Challenge. 9, 30, 48, 77

ELLIS: European Laboratory for Learning and Intelligent Systems. 12, 16

ENN: equivariant neural network. 51, 85

ESA: European Space Agency. 11, 29

ESNet: Energy Sciences Network. 71

EuCAIF: European Coalition for AI for Fundamental Physics. 12, 16, 78

EuroHPC: European High-Performance Computing Joint Undertaking. 10, 16, 78

FM: foundation model. 15, 53, 54, 55, 56, 57, 58, 70, 75, 77, 83

FSPS: Flexible Stellar Population Synthesis. 20

GGNS: gradient-guided nested sampling. 43

GNN: graph neural network. 36, 37

GPU: graphics processing unit. 16, 26, 34, 38, 43, 50, 68, 70, 71, 72, 73, 78, 82

GPz: Gaussian Processes for Photo-z. 19

GRU: gated recurrent unit. 30, 85

GSC: Galaxies Science Collaboration. 11, 76

HATS: Hierarchical Adaptive Tiling Scheme. 73

HMC: Hamiltonian Monte Carlo. 33, 42

HOD: halo occupancy distribution. 35

HPC: high-performance computing. 68, 82

HPDF: High Performance Data Facility. 16, 71

HSC: Hyper Suprime-Cam. 22

HST : Hubble Space Telescope. 22, 37, 53

IA: Intrinsic Alignment. 25, 35

IAIFI: NSF Institute for Artificial Intelligence and Fundamental Interactions. 77

IDAC: Independent Data Access Center. 10, 16, 71, 73

IID: independent and identically distributed. 58

IMNN: information-maximizing neural network. 46

IN2P3: Institut National de Physique Nucléaire et de Physique des Particules. 67, 87

IR: infrared. 21, 34

IRI: Integrated Research Infrastructure. 71
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ISSC: Informatics and Statistics Science Collaboration. 11, 76

JUPITER: Joint Undertaking Pioneer for Innovative and Transformative Exascale Research. 10, 78

JWST : James Webb Space Telescope. 53

KiDS: Kilo Degree Survey. 20, 26

KNe: kilonovae. 29, 48

kNN: k-nearest neighbors. 19

LCCF: Leadership Class Computing Facility. 71

LINCC Frameworks: LSST Interdisciplinary Network for Collaboration and Computing Frameworks. 9, 19,
73, 76

LLM: large language model. 10, 18, 53, 59, 60, 61, 62, 64, 65, 66, 68, 69, 70, 74, 77, 78, 81

LMC: Langevin Monte Carlo. 42

LSST: Legacy Survey of Space and Time. 8, 13, 18, 21, 22, 25, 27, 28, 32, 33, 35, 36, 38, 41, 42, 47, 51,
53, 54, 62, 63, 65, 66, 67, 68, 70, 72, 74, 76, 80, 83

LSST-DA: LSST Discovery Alliance. 81

LSTM: long short-term memory. 24, 85

LUMI: Large Unified Modern Infrastructure. 10, 78

MADNESS: Maximum A posteriori with Deep NEural networks for Source Separation. 37

MAP: maximum a posteriori. 23

MAS: multi-agent systems. 53

MCHMC: micro-canonical Hamiltonian Monte Carlo. 43

MCLMC: micro-canonical Langevin Monte Carlo. 43

MCMC: Markov chain Monte Carlo. 27, 39, 42, 46, 49, 61, 69

ML: machine learning. 8, 13, 18, 19, 22, 23, 25, 27, 28, 29, 32, 33, 35, 37, 39, 40, 41, 50, 53, 58, 67, 68,
70, 72, 73, 76, 80, 83

MOC: multi-order coverage. 31

MoE: mixture-of-experts. 57

MViT: multiscale vision transformers. 19

NASA: National Aeronautics and Space Administration. 71

NDE: neural density estimation. 14, 18, 19, 26, 40, 45, 83, 84

NERSC: National Energy Research Scientific Computing Center. 67, 70, 72, 78

NFW: Navarro–Frenk–White. 28
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NLE: neural likeliood estimation. 23, 45, 47

NPE: neural posterior estimation. 23, 25, 37, 45, 47

NRE: neural ratio estimation. 23, 44, 45, 47

NSF: National Science Foundation. 12, 71, 77

NUTS: No U-Turn Sampler. 33, 39, 42

ODE: ordinary differential equation. 50

OLCF: Oak Ridge Leadership Computing Facility. 16, 71, 72

ONNX: Open Neural Network Exchange. 68

OpSim: Operations Simulator. 29

Pan-STARRS: Panoramic Survey Telescope and Rapid Response System. 73

PDF: probability density function. 19

photo-z: photometric redshift. 13, 18, 25, 37, 39, 45, 51, 69, 76, 83

PINN: physics-informed neural network. 51, 85

PIT: probability integral transform. 40

PLAsTiCC: Photometric LSST Astronomical Time Series Classification Challenge. 9, 20, 29, 77

PSF: point-spread function. 25, 36, 50, 57, 69

QA: question answering. 64

R&D: research & development. 70

RAG: retrieval-augmented generation. 10, 59, 60, 61, 62, 64, 66

RAIL: Redshift Assessment Infrastructure Layers. 19, 40, 69, 83

RedMaPPer: Red-sequence Matched-filter Probabilistic Percolation. 27

ResNet: residual network. 22

RESSPECT: Recommendation System for Spectroscopic followup. 30, 83

RHMC: Riemann Hamiltonian Monte Carlo. 42

RNN: recurrent neural network. 29

RSP: Rubin Science Platform. 70, 72, 74, 76, 84

SAO: Smithsonian Astrophysical Observatory. 60, 86

SASSAFRAS: S/N Analysis of Simulated SpectrA for Rubin trAnsientS. 30

SBI: simulation-based inference. 14, 18, 23, 26, 28, 31, 32, 33, 40, 41, 44, 45, 47, 70, 83, 84

SBM: score-based model. 24
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SDE: stochastic differential equation. 24, 42

SDSS: Sloan Digital Sky Survey. 72

SED: spectral energy distribution. 18, 29, 61

SFH: star formation history. 34

SkAI: NSF–Simons AI Institute for the Sky. 30, 71, 77

SLAC: Stanford Linear Accelerator Center. 70, 72

SLACS: Sloan Lens ACS (Advanced Camera for Surveys) Survey. 24

SLSC: Strong Lensing Science Collaboration. 11, 22

SMWLVSC: Stars, Milky Way, and Local Volume Science Collaboration. 76

SN Ia: Type Ia supernova. 13, 20, 28, 44, 77

SNANA: Supernova Analysis package. 29

SNe: supernovae. 22, 29, 39, 40, 48, 51, 54

SNR: signal-to-noise ratio. 38, 50

SO: Simons Observatory. 73

SOAR: Southern Astrophysical Research Telescope. 30

SOM: self-organizing map. 19, 25, 37

SPHEREx: Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer .
72

SPS: stellar population synthesis. 20, 33, 48

SPT: South Pole Telescope. 73

SQL: structured query language. 62

sSFR: specific star formation rate. 25

SSL: self-supervised Learning. 55, 56

SSSC: Solar System Science Collaboration. 76

StratLearn: stratified learning. 20

SZ: Sunyaev–Zeldovich. 27

TiDES: Time Domain Extragalactic Survey. 31, 57, 77

TPZ: Trees for Photo-z. 19

TVSSC: Transients and Variable Stars Science Collaboration. 11, 76

UQ: uncertainty quantification. 14, 36, 40, 41, 47, 83, 84

USDF: US Data Facility. 70, 72
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UV: ultraviolet. 21, 34

VAE: variational autoencoder. 28, 37

VI: variational inference. 23, 43, 46, 85

WaZP: Wavelet Z-Photometric. 27

WG: working group. 11, 40

WISE: Wide-field Infrared Survey Explorer . 72

YOLO: You Only Look Once. 27, 38, 85

ZTF: Zwicky Transient Facility. 73
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A&A, 673, A33, doi: 10.1051/0004-6361/202244534

Schuldt, S., Suyu, S. H., Meinhardt, T., et al. 2021,
A&A, 646, A126,
doi: 10.1051/0004-6361/202039574
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arXiv e-prints, arXiv:2311.17238,
doi: 10.48550/arXiv.2311.17238

Tak, H., Mandel, K., van Dyk, D. A., et al. 2017, Annals
of Applied Statistics, 11, 1309,
doi: doi:10.1214/17-AOAS1027

Takahashi, R., Sato, M., Nishimichi, T., Taruya, A., &
Oguri, M. 2012, ApJ, 761, 152,
doi: 10.1088/0004-637X/761/2/152

Talts, S., Betancourt, M., Simpson, D., Vehtari, A., &
Gelman, A. 2018, arXiv e-prints, arXiv:1804.06788,
doi: 10.48550/arXiv.1804.06788

Tan, A., Protopapas, P., Cádiz-Leyton, M., et al. 2025,
arXiv e-prints, arXiv:2509.24134,
doi: 10.48550/arXiv.2509.24134

Tauman Kalai, A., Nachum, O., Vempala, S. S., &
Zhang, E. 2025, arXiv e-prints, arXiv:2509.04664,
doi: 10.48550/arXiv.2509.04664

TDCOSMO Collaboration, Birrer, S., Buckley-Geer,
E. J., et al. 2025, A&A, 704, A63,
doi: 10.1051/0004-6361/202555801

Tewes, M., Kuntzer, T., Nakajima, R., et al. 2019, A&A,
621, A36, doi: 10.1051/0004-6361/201833775

The LSST Dark Energy Science Collaboration,
Mandelbaum, R., Eifler, T., et al. 2018, arXiv e-prints,
arXiv:1809.01669, doi: 10.48550/arXiv.1809.01669

Thorp, S., Alsing, J., Peiris, H. V., et al. 2024a, ApJ,
975, 145, doi: 10.3847/1538-4357/ad7736

Thorp, S., & Mandel, K. S. 2022, MNRAS, 517, 2360,
doi: 10.1093/mnras/stac2714

Thorp, S., Mandel, K. S., Jones, D. O., Kirshner, R. P.,
& Challis, P. M. 2024b, MNRAS, 530, 4016,
doi: 10.1093/mnras/stae1111

Thorp, S., Mandel, K. S., Jones, D. O., Ward, S. M., &
Narayan, G. 2021, MNRAS, 508, 4310,
doi: 10.1093/mnras/stab2849

Thorp, S., Peiris, H. V., Mortlock, D. J., et al. 2025a,
ApJS, 276, 5, doi: 10.3847/1538-4365/ad8ebd

LSST DESC 110

http://doi.org/10.48550/arXiv.2111.08005
http://doi.org/10.48550/arXiv.2011.13456
http://doi.org/10.3847/1538-4357/add72e
http://doi.org/10.1093/mnras/stu1410
http://doi.org/10.1093/mnras/staa278
http://doi.org/10.1103/shym-w46f
http://doi.org/10.1103/physrevd.110.123007
http://doi.org/10.3847/1538-4357/ac7c08
http://doi.org/10.1038/s41550-020-1169-1
http://doi.org/10.1093/mnras/stad3170
http://doi.org/10.1093/mnras/stv2953
http://doi.org/10.48550/arXiv.2507.07833
http://doi.org/10.1086/506137
http://doi.org/10.1111/j.1365-2966.2010.16731.x
http://doi.org/10.48550/arXiv.2505.19897
http://doi.org/10.48550/arXiv.2510.08354
http://doi.org/10.1111/j.1365-2966.2006.10733.x
http://doi.org/10.48550/arXiv.2410.16347
http://doi.org/10.48550/arXiv.2311.17238
http://doi.org/doi:10.1214/17-AOAS1027
http://doi.org/10.1088/0004-637X/761/2/152
http://doi.org/10.48550/arXiv.1804.06788
http://doi.org/10.48550/arXiv.2509.24134
http://doi.org/10.48550/arXiv.2509.04664
http://doi.org/10.1051/0004-6361/202555801
http://doi.org/10.1051/0004-6361/201833775
http://doi.org/10.48550/arXiv.1809.01669
http://doi.org/10.3847/1538-4357/ad7736
http://doi.org/10.1093/mnras/stac2714
http://doi.org/10.1093/mnras/stae1111
http://doi.org/10.1093/mnras/stab2849
http://doi.org/10.3847/1538-4365/ad8ebd


Thorp, S., Peiris, H. V., Jagwani, G., et al. 2025b, ApJ,
993, 240, doi: 10.3847/1538-4357/ae0936

Tian, D.-C., Yang, Y., Wen, Z.-L., & Xia, J.-Q. 2025,
ApJS, 276, 21, doi: 10.3847/1538-4365/ad8bbd

Tian, Y., Chen, X., & Ganguli, S. 2021, arXiv e-prints,
arXiv:2102.06810, doi: 10.48550/arXiv.2102.06810

Tortorelli, L., Fischbacher, S., Robotham, A. S. G.,
Nussbaumer, C., & Refregier, A. 2025, arXiv e-prints,
arXiv:2509.00150, doi: 10.48550/arXiv.2509.00150

Trotta, R. 2008, Contemporary Physics, 49, 71–104,
doi: 10.1080/00107510802066753

—. 2025, Nature Astronomy,
doi: 10.1038/s41550-025-02738-w

Troxel, M. A., & Ishak, M. 2015, PhR, 558, 1,
doi: 10.1016/j.physrep.2014.11.001

Uzsoy, A. S. M., Thorp, S., Grayling, M., & Mandel,
K. S. 2024, MNRAS, 535, 2306,
doi: 10.1093/mnras/stae2465

Van Alfen, N., Campbell, D., Blazek, J., et al. 2024, The
Open Journal of Astrophysics, 7, 45,
doi: 10.33232/001c.118783

van den Busch, J. L., Wright, A. H., Hildebrandt, H.,
et al. 2022, A&A, 664, A170,
doi: 10.1051/0004-6361/202142083

Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, arXiv
e-prints, arXiv:1706.03762,
doi: 10.48550/arXiv.1706.03762

Vegetti, S., & Koopmans, L. V. E. 2009, MNRAS, 392,
945, doi: 10.1111/j.1365-2966.2008.14005.x

Venkatraman, P., Erickson, S., Marshall, P., et al. 2025,
arXiv e-prints, arXiv:2510.20778.
https://arxiv.org/abs/2510.20778

Ver Steeg, G., & Galstyan, A. 2021, in Advances in
Neural Information Processing Systems 34, ed.
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, &
J. W. Vaughan (Curran Associates, Inc.),
11012–11025, doi: 10.48550/arXiv.2111.02434

Villaescusa-Navarro, F., Wandelt, B. D.,
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