Development of a Digital Twin for Hydrogen Dispersion and Safety Assessment in an Electrolyzer Based Hydrogen Production Facility
- National Renewable Energy Lab., Golden, CO (United States)
- GTI Energy
Digital twin models are virtual representations of physical systems that use real-time data to simulate and optimize performance. This study presents the development and initial implementation of a digital twin (DT) for the electrolyzer-based hydrogen production facility at NREL's Advanced Research on Integrated Energy Systems (ARIES), focused on enhancing safety and optimizing sensor placement through physics-based simulations and metadata integration. The DT incorporates detailed facility-specific information, including component layout, leak locations, and controlled release parameters, to model hydrogen dispersion under varying environmental conditions. Using steady-state computational fluid dynamics (CFD) simulations informed by real meteorological data, such as wind speed, direction, and vertical wind profiles, the DT enables visualization of hydrogen plume behavior and spatial concentration distributions. Comparative analysis between high and low wind speed scenarios illustrates the significant influence of wind dynamics on plume shape and extent, with horizontal momentum dominating dispersion at higher speeds, while buoyancy effects become more prominent under low wind conditions. These simulations generate a rich dataset embedded within the DT, allowing users to assess potential leak outcomes and identify optimal sensor locations based on concentration thresholds. The model supports scenario-based analysis to guide safety strategies and equipment deployment for open-area hydrogen infrastructure. The digital twin thus serves as a dynamic platform for virtual prototyping, providing predictive insight into hydrogen behavior and enhancing risk-informed decision-making. This initial phase establishes a validated foundation for future integration of transient, uncontrolled leak scenarios and real-time sensor feedback, positioning the DT as a critical tool for safety design, operational planning, and adaptive monitoring in hydrogen systems. Overall, the approach demonstrates the value of combining environmental data with digital simulations to inform safer and more efficient deployment of hydrogen technologies.
- Research Organization:
- National Renewable Energy Laboratory (NREL), Golden, CO (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Hydrogen Fuel Cell Technologies Office (HFTO)
- DOE Contract Number:
- AC36-08GO28308
- OSTI ID:
- 3011897
- Report Number(s):
- NREL/PR-5700-97059
- Resource Type:
- Conference presentation
- Conference Information:
- Presented at the International Conference on Hydrogen Safety (ICHS 2025), 23-25 September 2025, Seoul, South Korea
- Country of Publication:
- United States
- Language:
- English
Similar Records
Development of a Digital Twin for Hydrogen Dispersion and Safety Assessment in an Electrolyzer-Based Hydrogen Production Facility: Preprint
Hydrogen Production, Grid Integration, and Scaling for the Future
Hydrogen Production, Grid Integration, and Scaling for the Future
Conference
·
Thu Jan 15 19:00:00 EST 2026
·
OSTI ID:3015053
Hydrogen Production, Grid Integration, and Scaling for the Future
Conference
·
Wed Jul 10 00:00:00 EDT 2024
·
OSTI ID:2403469
Hydrogen Production, Grid Integration, and Scaling for the Future
Conference
·
Wed Jun 14 00:00:00 EDT 2023
·
OSTI ID:1985799