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Important safety questions:

How can facility metadata be integrated into a
digital twin for hydrogen safety?

What steady-state conditions can be modeled
to establish controlled baseline scenarios?

Our approach:

Build Computational fluid dynamics (CFD)
models of a hydrogen facility.

Conduct validation/comparison studies with
controlled releases.

Use CFD model to perform hydrogen
dispersion scenario analysis.

Use model outputs to optimize sensor
placement and detection strategies.
Provide a validation platform for sensor
developers through the digital twin.
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Reasons for Detection and Monitoring

O Provide assurances of safety

O Minimize product waste (emissions monitoring)

O Process control applications (up to 100 vol%)

Avoids accumulation and potential for delayed ignition
Activate warning alarm and system shutdown

Alleviate concerns of community stakeholders

Desired monitoring range of interest (ppm,)
Market driven / application specific

Fuel Composition/Fuel Quality and metrology

O Released hydrogen behavior modeling validation The impact of delayed ignition arising from an
Impacted by environmental and facility parameters undetected (and unexpected) hydrogen release and
Inform sensor deployment strategies accumulation can be illustrated in “Hydrogen refueling

O Prognosis and Health Management (PHM) Applications

plant explodes in Norway.” see

Improve reliability and cut maintenance cost explodes-norway

Gas sensors represent the most common strategy for the direct detection of hydrogen releases.
Delayed ignition of accumulated released hydrogen MUST be avoided
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Outdoor hydrogen dispersion modeling

ARIES (Advanced Research on Integrated Energy Systems) testbed
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Modeling outdoor hydrogen releases at ARIES Modeling integrates leak and site parameters

(Test bed for release studies) (e.g., wind, weather and structures)
— 22.4-27 kg/hr release rate - Sensor placement strategies (short-term)
— 0.84 bar avg. ambient pressure - Emissions profiling and source location (longer-

— Historically representative wind speed & direction range goals)



Hydrogen leak Modeling

Developed pipeline for sensor placement strategy

Site specific Site specific Data processing
weather CAD and CFD of H,

Digital twin
integration
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Digital twin Integration H, concentration map at various locations of interests on site



Wind conditions on site
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H, dispersion behavior

Hydrogen dispersion nature is wind dependent
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CFD modeling and statistical sampling

e 240 simulations for 1 year weather
data (30 unique wind conditions) and
8 wind directions (45° interval)

Propagation of
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Large data ensemble and processing techniques for simulation-based approach



Analysis of hydrogen dispersion
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Digital twin

Site specific information integration

Metadata of physical model (CAD model tec.)

Setting up digital model with metadata

Setting physical boundary of digital model for navigation control

Dataset generation — Steady state - controlled

« Steady state simulation-based concentration data generation

* Site-specific weather condition-based simulation environment

« Steady-state plume analysis and generation of concentration map for
digital twin

Dataset generation — Transient- uncontrolled

¢ Generate credible scenarios for physical twin

« Simulate credible leak scenarios using CFD

* Generate transient data on digital space and preliminary sensor locations
* Modify sensor placement with transient data

Model Integration

+ Use CFD based controlled release data, uncontrolled release data and site-
specific data meta data for predictive model

« Implement data-driven and predictive model in Digital twin

+ Implement user-friendly and iterpretable interface on digital twin
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Hydrogen plume cloud (In red) above 500 ppm (0.05 vol % or higher)
for same wind direction and leak rate (a& c) High wind scenario at
7.6 m/s and (b& d) Low wind scenario at 0.6 m/s (a-b) are top eagle
eye view for plume and (c-d) are side views from ground. Scale on the
bottom is in meters.

Digital twin incorporating the site-
specific conditions
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Conclusion and
Future work

Conclusion

* Developed CFD-based framework for hydrogen dispersion
modeling in both indoor and outdoor facilities.

* Integrated site-specific metadata, weather, and facility layout
into a digital twin environment.

* Demonstrated how modeling informs sensor placement,
detection strategies, and risk reduction.

* Established simulation pipeline as a validation platform for
sensor developers and facility operators.

Future Work

* Extend digital twin to real-time integration with live sensor
data and operational controls.

* Incorporate machine learning and reduced-order models for
faster scenario prediction.

* Expand from steady-state to transient, multi-source leak
events.

* Apply framework to diverse facilities (refueling stations,
electrolyzers, indoor labs).

* Collaborate with industry partners for sensor testing.



* Thank you! Contact:

William.Butther@nrel.gov

e Questions?

www.nrel.gov
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