The Nucleon Axial Form Factor from Elementary Target Data
Journal Article
·
· No journal information
OSTI ID:3010178
more »
- LLNL, Livermore
- York U., Canada; Rochester U.
- Rochester U.; SLAC; Stanford U.
- Aligarh Muslim U.
- William-Mary Coll.; Aligarh Muslim U.
- Fermilab
- Rochester U.
- Rio de Janeiro, CBPF; UC, Davis (main)
- Rio de Janeiro, CBPF
- Fermilab; Rochester U.
- Guanajuato U.
- Lima, Pont. U. Catolica
- Tufts U.
- Oregon State U.
- Minnesota U., Duluth
- York U., Canada; Fermilab
- Queen Mary, U. of London (main)
- Kentucky U.; Fermilab
- Rochester U.; U. Miss, Oxford
- Imperial Coll., London
- William-Mary Coll.
- Rochester U.; UPenn, Philadelphia
- Rio de Janeiro, CBPF; Drexel U.
- William-Mary Coll.; Guanajuato U.
- Notre Dame U.; Rochester U.; Argonne (main)
- Pittsburgh U.
- UPenn, Philadelphia; Guanajuato U.
- Rutgers U., Piscataway (main)
- San Marcos Natl. U.
- Oxford U.; Imperial Coll., London
- William-Mary Coll.; Syracuse U. (main)
Precise neutrino-nucleon amplitudes are essential ingredients for predicting neutrino event rates in current and upcoming long-baseline neutrino oscillation experiments. A common neutrino interaction with a low reaction threshold and with most of the energy carried by two final state particles is quasielastic scattering, for which the nucleon axial form factor, $$F_{A}(Q^{2})$$, is a dominant source of uncertainty. Improvements to the nucleon axial form factor rely on neutrino scattering data with elementary targets to reduce or eliminate the need for nuclear modeling systematics. This work examines constraints on the nucleon axial form factor that can be achieved from datasets of neutrino scattering on deuterium targets, Lattice QCD predictions, and from the recent hydrogen target data from the MINERvA Collaboration. Significant tension is found between hydrogen and deuterium target data, suggesting that extractions from deuterium underestimate both the central value and uncertainty of the form factor. Parameterizations for and uncertainties of the nucleon axial form factor using the $$z$$ expansion are provided.
- Research Organization:
- U. Miss, Oxford; Kentucky U.; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lima, Pont. U. Catolica; Oregon State U.; Aligarh Muslim U.; Rochester U.; Tufts U.; Guanajuato U.; UC, Davis (main); Pittsburgh U.; UPenn, Philadelphia; Notre Dame U.; Drexel U.; Syracuse U. (main); Imperial Coll., London; William-Mary Coll.; San Marcos Natl. U.; Rio de Janeiro, CBPF; Queen Mary, U. of London (main); Stanford U.; Rutgers U., Piscataway (main); York U., Canada; Argonne National Laboratory (ANL), Argonne, IL (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Minnesota U., Duluth; Oxford U.
- Sponsoring Organization:
- US Department of Energy
- DOE Contract Number:
- 89243024CSC000002
- OSTI ID:
- 3010178
- Report Number(s):
- LLNL-JRNL-2014317; FERMILAB-PUB-25-0912-LBNF-T; oai:inspirehep.net:3093240; arXiv:2512.14097
- Journal Information:
- No journal information, Journal Name: No journal information
- Country of Publication:
- United States
- Language:
- English
Similar Records
The Nucleon Axial Form Factor and Staggered Lattice QCD
Model-independent determination of the axial mass parameter in quasielastic neutrino-nucleon scattering
Quasielastic neutrino-nucleus interactions in the empirical model of running axial mass of the nucleon
Thesis/Dissertation
·
Sat Dec 31 23:00:00 EST 2016
·
OSTI ID:1416547
Model-independent determination of the axial mass parameter in quasielastic neutrino-nucleon scattering
Journal Article
·
Sat Oct 01 00:00:00 EDT 2011
· Physical Review. D, Particles Fields
·
OSTI ID:21607752
Quasielastic neutrino-nucleus interactions in the empirical model of running axial mass of the nucleon
Journal Article
·
Tue Nov 14 23:00:00 EST 2017
· Physics of Particles and Nuclei
·
OSTI ID:22979465