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Precise neutrino-nucleon amplitudes are essential ingredients for predicting neutrino event rates
in current and upcoming long-baseline neutrino oscillation experiments. A common neutrino inter-
action with a low reaction threshold and with most of the energy carried by two final state particles
is quasielastic scattering, for which the nucleon axial form factor, Fa(Q?), is a dominant source of
uncertainty. Improvements to the nucleon axial form factor rely on neutrino scattering data with
elementary targets to reduce or eliminate the need for nuclear modeling systematics. This work ex-
amines constraints on the nucleon axial form factor that can be achieved from datasets of neutrino
scattering on deuterium targets, Lattice QCD predictions, and from the recent hydrogen target data
from the MINERvVA Collaboration. Significant tension is found between hydrogen and deuterium
target data, suggesting that extractions from deuterium underestimate both the central value and
uncertainty of the form factor. Parameterizations for and uncertainties of the nucleon axial form

factor using the z expansion are provided.
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I. INTRODUCTION

Explorations of the properties of neutrinos and their
flavor oscillation are entering a new era of precision. Cur-
rent and upcoming flagship long baseline neutrino oscil-
lation experimental programs will measure neutrino in-
teractions with exceptional precision, thereby enabling
new insights about the neutrino mass hierarchy and CP
violation in the leptonic sector [I-5]. In support of the
substantial ongoing experimental efforts, new theoretical
guidance is needed to help meet the ambitious precision
requirements of next-generation neutrino scattering ex-
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periments. With help from improved theory constraints,
these experiments can maximize their potential for inves-
tigating the physics of neutrinos.

Improving the theoretical description of neutrino-
nucleus cross sections is not a simple task. Practical lim-
itations prevent the creation of a neutrino beam that is
simultaneously narrowly-peaked around a single energy
and sufficiently intense for a high-statistics measurement.
Modern neutrino oscillation experiments therefore cover
a range of energies with several different physical mech-
anisms at play. To extract a spectrum of neutrino inter-
actions at both a near and far detector, which in turn
gives access to the oscillation probability as a function of
energy, distributions of neutrinos must be statistically re-
constructed under the assumption of a model that encom-
passes all of the known interaction physics. It is therefore
of interest to understand and quantify several neutrino
interaction processes over a range of incident energies.

Isolated exclusive interaction channels that have both
large cross sections and large uncertainties are the pri-
mary targets for theoretical improvements. The most
prominent of these is neutrino quasielastic scattering,
in which a neutrino scatters off of a quasi-free nucleon
within a bound nuclear system. Neutrino quasielastic
scattering is a primary signal measurement process of
long baseline neutrino oscillation experiments and the
dominant process at play for small neutrino energies. The
weak interactions characteristic of neutrino scattering are
sensitive to a nucleon axial current that is not probed
by electromagnetic interactions. The axial current in-
teraction is therefore not nearly as well-constrained by
experimental scattering measurements as the vector cur-
rent interactions that are a part of the electromagnetic
interaction.

Despite being less constrained than the vector form
factors, the axial form factor has historically been quoted
with very small uncertainties. Those small uncertainties
result from the use of the dipole parameterization,

Fa(Q%) = mg#i)g’ (1)

which has a single free parameter, M4, the “axial mass”.
This parameterization has insufficient freedom to de-
scribe the set of shapes consistent with theoretical con-
straints and existing experimental data [0, 7]. Reanalysis
with neutrino-deuterium scattering data and a form fac-
tor with more parameterized freedom revealed that the
form factor uncertainty should be at least an order of
magnitude larger to accommodate the full range of pos-
sible form factor shapes [3]. There is also recent evi-
dence from Monte Carlo tunes suggesting that the tuned
neutrino quasielastic cross sections are larger than pre-
vious fits for the axial from factor from the deuterium
data [9, 10]. This evidence appeared simultaneously with
first principles calculations of Lattice Quantum Chromo-
dynamics (LQCD), which suggest that the axial form
factor is underestimated at large momentum transfer by
almost 30% [11].

A primary interest is to quantify modern constraints
of the nucleon axial form factor accurately and with the-
oretically robust uncertainties. For this purpose, sources
that are free or nearly-free nucleon targets are most use-
ful. This includes neutrino-deuterium scattering experi-
mental data analyzed in Ref. [8], which in this work are
studied in conjunction with the addition of data from
the BEBC neutrino-deuterium experiment [12-14] and
the antineutrino-hydrogen scattering experimental data
of Ref. [15]. Complementary constraints originating from
LQCD are also explored in a sister paper [16], which will
be compared to and combined with experimental sources
in the present work.

Additional constraints on the slope of the form factor
near zero momentum transfer could be obtained from
additional pion electroproduction data [17] and muonic
hydrogen [18]. The slope can be extracted from pion
electroproduction data by comparing to a prediction ob-
tained from expanding the amplitude for small Q2 and
M, in Heavy Baryon Chiral Perturbation Theory at
one-loop order, such as in Ref. [19], where the slope
shows up as a low energy constant in the effective the-
ory. The pion electroproduction amplitudes are typically
computed close to the pion production threshold, around
Q? ~ 0.1 GeV? [20-22], and at this scale corrections can
enter at the level of 10% [19]. For more details on the
relationship between invariant amplitudes and the dif-
ferential cross sections, see for example Ref. [22]. The
muonic hydrogen capture rate is also sensitive to the axial
form factor at a momentum transfer fixed by kinematics,
around a value of Q% ~ 0.01 GeV? [23-25]. Constraints
on the axial radius from muon capture enter at about the
50% level [18], with an uncertainty budget dominated by
statistics. Studies of constraints on the slope from these
other sources are outside the scope of this work.

The sections in this paper are organized as follows. In
Sect. 11, details of the experimental datasets and fits em-
ployed in this work are discussed. Sect. III discusses the
particulars of fitting data and evaluation of systematic
uncertainties based on these fits. Sect. IV contains the
final results from fitting including quantified uncertain-
ties. Sect. V discusses the results of this work and their
implications on experiments that involve neutrino scat-
tering.

II. FIT DETAILS

This section focuses on the details associated with fit-
ting data from neutrino quasielastic scattering off of both
hydrogen and deuterium targets. The primary observ-
able of interest is the flux-integrated neutrino-nucleon
quasielastic scattering cross section. The differential
cross section is used to fit the nucleon axial form factor,
F4, as a function of the spacelike 4-momentum transfer
squared, Q2.

After introducing the formalism in Sect. IT A, the pa-
rameterization for F4 used in this work is outlined in



Sects. IIB and IIC. Sect. IID gives an overview of
the datasets and systematic corrections applied to those
datasets that are relevant for this work. The remain-
ing Sects. ITE and IIF deal with the specifics for mak-
ing theory predictions of the flux-integrated differential
cross section from the available information about the
datasets.

A. Differential Quasielastic Scattering Cross
Section

The neutrino-nucleon quasielastic cross section for an
isosymmetric, unpolarized target is given as a function
of Q? and neutrino energy E, by [20, 27]

don . o _ GEME|Vual?
a2 @B = =
2 (s —u) 2 (S*U)Q 2
AQ) = T B@Y) + C@)|. @)

where the sign on the B term is taken to be positive
(negative) for neutrino (antineutrino) scattering and the
neutrino is assumed to be massless. In this expression,
Gp is the Fermi constant, My is the average nucleon
mass, Vg is the CKM matrix element, and the kinematic
expansion parameter is

s—u=4MyNE, — Q* —mZ, (3)

which depends on the lepton mass my. Neglecting
second-class currents, the expressions A, B, and C are
given in terms of form factors,

m? + Q?
ME
1+ 7)F3 +7(F + F)? — (F) — 7F)?

A:

2
L <(F1 + Fy)? + (Fa+2Fp)? —4(1 + T)F,%>

AME ’

(4)

B:4TFA(F1+F2), (5)
1

C = (Fi+F +7F). (6)

These expressions use the dimensionless kinematic pa-
rameter 7 = Q%/4M?%,. In the limit of high E,, the kine-
matic prefactors on the A and B terms become small
compared to that of C, and Eqn. (2) becomes essentially
independent of E,,.

The four relevant form factors are the vector form fac-
tors F; and F5, the induced pseudoscalar form factor
Fp, and the axial form factor F4, which all have func-
tional dependence on Q2. The vector form factors are

taken from Refs. [258] and [29]!, with the latter being
used as the default choice. The vector form factors are
assumed to be precisely known, and the impact of their
uncertainty will be assessed in Sect. [IID 2. By impos-
ing the Partially Conserved Axial Current (PCAC) [31]
and Pion Pole Dominance (PPD) [32] constraints, the in-
duced pseudoscalar current is related to the axial form
factor with the expression

2M?

Fp=—i—"=
P Mzt 2

Fa. (7)

The PCAC relation imposes a Ward Identity-like relation
between the divergence of the axial current and the pseu-
doscalar current, proportional to the sum of the quark
masses rather than the difference. PPD then assumes
that the new pseudoscalar form factor that appears is
dominated by the pion pole through the Goldberger-
Treiman relation, which imposes a constraint connecting
the pseudoscalar form factor to the induced pseudoscalar
and allows the pseudoscalar form factor to be removed.

The deviation of the induced pseudoscalar form fac-
tor from the combined PCAC and PPD relation is not
expected to be significant. This assertion is supported
by various studies with LQCD [33-37], which observe no
statistically significant deviation from the PPD assump-
tion in the continuum limit. Considering that all con-
tributions of F'p to the differential cross section are also
suppressed by a factor of (my/My)?, the potential bias
introduced assuming the PCAC and PPD constraints is
expected to be small. It follows then that the leading
contribution to the uncertainty of the quasielastic differ-
ential cross section is attributed to the nucleon axial form
factor F4.

B. 2z Expansion Parameterization

The z expansion is formulated as a conformal mapping
to a small expansion parameter [38, 39]. The transfor-
mation from 4-momentum transfer Q2 to z is given as

\/tc+Q2_\/tc_tO
Vier Q@+ Vie—to

The parameter t. < 9M2 is bounded by the particle
production threshold, which is limited by 37 produc-
tion for the axial channel. The value Q?_, that satis-
fies 2(Q%_y;te,to) = 0 is determined by the selection of
szo = —to. The parameter tq is chosen for convenience
and can be adjusted to decrease the maximum value of
|z| over the entire range of Q? probed by neutrino scat-
tering experiments. The value of z satisfies the inequality

Z(Q27 tw to) =

(8)

1 This builds on a previous work by Ye et al.
optimizing the form factors for use at low Q2.

in Ref. [30] by



|z| < 1 within the kinematic range Q* € (—t, 00), guar-
anteeing a power series with a small expansion param-
eter within a range of momentum transfers relevant for
quasielastic scattering. For brevity, the dependence of z
on @2, t., and ty will be omitted in subsequent equations.

Having formulated the transformation from Q2 to z,
the form factors are now expressed as a power series in
the parameter z as

Fa(z) = Zakzk. (9)
k=0

In theory the sum contains an infinite number of terms,
but in practice the sum is truncated at a finite order kpay.
To regulate the large momentum transfer behavior of the
form factor, a sequence of sum rules is enforced with the

constraints
a n
(5:) Fa)

kmax

= Y k(k—1)...(k=n+1)a,=0.  (10)
k=n

1:O,n6{0,...,3}

z=

These sum rules have minimal impact on the shape of
the form factor within the range of data, but prevent the
form factor from exhibiting unbounded behavior in the
Q? — oo limit. This is useful for extrapolating the form
factor outside of the range of data, as is needed for many
Monte Carlo generators, while still retaining reasonable
functional behavior. One additional sum rule is added to
fix the intercept of the form factor to the axial coupling
value in the PDG? [10],

FaA(Q*=0)=ga
Emax
= —gat+ Y, axzf =0 (11)
k=0

where 29 = 2(Q? = 0). This constraint is taken to be
exact since the uncertainty on g4 is below the precision
of the axial form factor probed by experiments. With the
full set of four derivative sum rules and axial coupling
constraint, a fit to a z expansion with k.. coefficients
will have k.« — 4 free parameters.

C. z Expansion Regularization

The power series coefficients of the z expansion are
constrained by unitarity to be bounded and decreasing
with increasing order [38]. The relative size of the coef-
ficients is therefore not expected to be too large. This

2 This work uses the convention g4 > 0, whereas PDG reports the
axial coupling with a convention g4 < 0. Note that Ref. [¢] also
uses a convention with g4 < 0, which amounts to a sign flip of
all of the z expansion coefficients.

4

was the motivation for introducing a x? penalty term in
Ref. [8] of the form

2

kmax

Xf)enalty()‘) =A Z

k=1

ak

(12)

ap0k

where the nominal A was previously taken to be 1. The
size of the nominal prior widths on the coefficient ratios
was taken to be

o = min|5,25/k] (13)

reflecting a modest prior width for low-order coeflicients
and more restriction on higher order coefficients.

In this work, the same penalty term as in Eqn. (12) is
employed to regulate the relative size of coefficients and
the choice of width oy is retained. However, the value of
A is selected by imposing an L-curve heuristic, taking the
optimal value of A for a particular fit to be the point of
minimum radius of curvature (or A = 0 in cases where no
minimum is observed). The final choice of A is selected by
finding a compromise that accommodates several differ-
ent fit choices (including kmax, to, and included datasets)
as described in Sect. ITA.

D. Datasets and Corrections
1. Experimental Datasets

There are five experimental datasets that were studied
in this work. Three of these datasets (ANL, BNL, and
FNAL) were previously considered in Ref. [3]. The rele-
vant information about each dataset is listed in Tab. I.

The first two columns of Tab. I indicate the references
for that dataset and the label applied to those data. The
third column contains the scattering interaction that was
considered, either corresponding to scattering with hy-
drogen (7, + p, MINERvVA only) or deuterium (v, + D).
The fourth column contains the type of distribution re-
ported for the dataset, either as an event distribution
(dN/dQ?) or as a differential cross section (do/dQ?).
The way that each of these event distributions is han-
dled will be discussed throughout the rest of this section.

The fifth column is the cuts applied to the data.
There are again three options, related to the kinemat-
ics: “Q?” indicates that the low-Q? bins are removed
to avoid systematics associated with low momentum
transfer. Further attempts to handle the low-Q2 be-
havior are explained in Sections [ID4 and IID5. Two
cuts to the 4-momentum transfer were applied, taking
0.06 and 0.20 GeV? to match the historical choices in
Ref. [8], and the consequences of these cuts discussed
in more detail in Sect. I[IIC. The MINERvA dataset
applies two other cuts: “p,,” a cut on the outgoing
muon momentum, and “f,,” a cut on the angle of the
outgoing muon momentum. The outgoing momentum
for the MINERvA dataset was restricted to the range



References‘ Dataset ‘Interaction ‘ Dist. Type‘ Data Cuts ‘ Flux Unc.
[41-44] ANL vy +D dN/dQ? Q? > {0.06,0.20} GeV? dN/dE
] BNL v,+D | dN/dQ? Q? > {0.06,0.20} GeV? dN/dE
[46] FNAL v, +D | dN/dQ? Q? > {0.06,0.20} GeV? dN/dE
[12-14] BEBC v, +D do/dQ? — Scaled
[15, 47] |MINERvVA| D,+p do/dQ* |1.5 < p, <20 GeV, 6, < 20°|Covariance

TABLE I

The list of datasets considered in this work. The columns of the table indicate the references for the dataset,

the label used for the dataset, the scattering interaction considered, the type of distribution reported in the reference, the

implementation of the flux uncertainty, and the cuts applied to the dataset.

1.5 < py < 20 GeV/c and the outgoing angle to be
0, < 20°. The remaining sixth column is described in
the next subsection.

2.  Flux Uncertainty

The last column of Tab. I is the method that was ap-
plied to capture the uncertainty due to the neutrino flux.
There are three options listed. For the ANL, BNL, and
FNAL datasets, labeled with “dN/dE,” the flux uncer-
tainty is applied to the bins of the neutrino energy event
distribution. Each bin in the energy event distribution is
allowed to float independently with a series of nuisance
parameters 7); as

dN
dE,

dN
n

) o (14)

i

dE,

iE:

3 3
where 6[dN/dE,]; is the statistical uncertainty on the
event distribution in bin ¢. Each nuisance parameter 7;
is priored with a Gaussian penalty of 0 £ 1.

In the case of the “scaled” flux uncertainty for BEBC,
all bins in the do/dQ? distribution were allowed to float

with a single normalization across all bins,
N(@) =1+7dN, (15)

where dN is the relative flux uncertainty over all bins
and 7 is a nuisance parameter that is fit with the data.
The nominal value of dN is chosen to be 0.10, and is
compared to a value of 0.20 in Sect. III C 4. The nuisance
parameter was also given a Gaussian penalty of 0 + 1.

The “covariance” label for MINERvVA indicates that
the flux uncertainty was included in the covariance ma-
trix for the do/dQ? distribution and so is not considered
separately.

8. Normalizations

The ANL, BNL, and FNAL datasets, lack sufficient
information to absolutely normalize the event distribu-
tions. The available distributions lack correlations be-
tween the event E, and Q2. Without this information,
there is a complicated interplay between the applied @Q?
cut, the differential cross section with its deuterium cor-
rection, and the flux uncertainty. When bins are removed

from the differential cross section, the neutrino energy
distribution must also be reduced to accurately imple-
ment the removal of low Q? events. The exact amount
that each of the energy distribution bins should be re-
duced depends on the fraction of events that would fall
into the @2 bins in question, which in turn depends on the
assumed nucleon form factors and deuterium corrections
for those Q? bins. It is therefore difficult to propagate
the available flux uncertainties to the binned predictions.

To address this concern, the ANL, BNL, and FNAL
datasets are fit with a normalization A that is allowed
to float without an imposed prior. The flux uncertainty
on the BEBC dataset is captured through a floating
normalization that is priored via Eqn. (15). For the
MINERvA dataset, the normalization is fixed to 1 as
information about the flux uncertainty is embedded in
the provided covariance.

4. FEfficiency Corrections

The deuterium bubble chamber experiments suffered
from reduced efficiency — referred to as “acceptance” in
Ref. [11] — when tracks were not prominent enough to
measure accurately. This reduced efficiency primarily af-
fected the low-Q? region and was accounted for with the
efficiency correction

[€(Q) + &5e(@)]

1 3e(Q?) ]
€(Q2) «(Q?)

Q%)

14¢ (16)

The efficiency correction (e) and its uncertainty (de) used
in this work was taken from Figure 1 of Ref. [14]. The
same form of the correction was applied to the ANL,
BNL, and FNAL datasets with an independent & nui-
sance parameter for each dataset.

5. Deuterium Corrections

For experiments with a deuterium target, a correction
is needed to relate the free nucleon quasielastic cross sec-
tion (on) to the deuterium cross section (op). This cor-
rection is typically assumed (as is the case in the present



work) to be characterized by a ratio that depends only
on Q7

dop don

o B @) ~ RQ) ST ELQY. (17)

The approach of marginalizing the deuterium correction
into multiplicative corrections was discussed in Refs. [48,

The ratio R(Q?) should in general depend on the en-
ergy transfer w, and consequently FE,, as well. This
can be seen by assuming an oversimplified approxima-
tion where the presence of a spectator proton inside of
a deuterium nucleus forces the neutron to move with
some Fermi momentum p'relative to the two-nucleon cen-
ter of mass system. Then the relationship between 4-
momentum transfer squared and the energy transfer in
quasielastic interactions takes the form

QR+ %g
2FN

In the special case of p’ = 0, that yields an exact corre-
spondence w = Q?/2My. If a Lorentz boost were ap-
plied to cancel out the Fermi motion, then the effective
FE, as seen by the neutron at rest would be modified even
though the ? remains the same. Unless the distribution
of neutron momenta within the deuterium nucleus con-
spired to cancel all w dependence, both Q% and w must
therefore play separate roles in the deuterium correction.
This kind of effect would be realized in nature by, for
example, two-particle two-hole (2p2h) interactions in the
deuterium nucleus. The short-range interactions char-
acterizing the 2p2h are not included in the deuterium
corrections of Singh [48] given in R but would modify
the w dependence at fixed Q?, especially at low Q2. Ide-
ally the ratio could be promoted to depend on F,, as well,
choosing F, over w because of the existing dependence
on F, via the flux,

—5 (B, Q%) =

(18)

dOD dUN

aQ? dQ?
There are a number of concerns regarding the deu-
terium data, many of which relate to the low-Q? data.
One immediate worry is that the deuterium effects are
poorly understood, namely that the energies involved
in neutrino scattering are sensitive to short-range inter-
actions between nucleons inside the deuterium nucleus.
Since no correction simultaneously exploring the w and
Q? dependence of the deuterium nucleus is readily avail-
able in the literature, this study is relegated to future
works. The final quoted results from this work will not
combine deuterium data with nucleon and hence will not
be subject to the choice that is made for the form of R.

R(Ey, Q%) ~5 (B, Q7). (19)

E. Handling Event Distributions

The ANL, BNL, and FNAL datasets report event dis-
tributions, which require different handling than flux-
integrated differential cross sections. The relation used to

compute the theory prediction for the event distribution
in bin 7 is

A d@?}i_N [, @ [ e
dd do
J@IRQ®) g () o <EV,Q2>]

(20)

This relation depends on the normalization A (discussed
in Sect. IID 3), the efficiency correction f (Eqn. (16)),
the deuterium correction R (Eqn. (17)), and the flux @,
which is determined from the event distribution over neu-
trino energy

d® 1

dE, ~ o(E,)

dN

iE. (21)

The cross section that appears in the denominator of
Eqn. (21) is obtained by integrating the differential cross
section over Q2,

o(E,) = / d@z%g(];,,,m (22)

This integration was carried out numerically with fixed
free nucleon form factor parameterizations. The fits were
allowed to run to completion with the fixed parameter-
izations, and then the parameterizations were updated
to allow for variations in the form factors. After 4 itera-
tions, the fit parameters had saturated such that further
updates resulted in negligible shifts.

The neutrino flux for the FNAL dataset is at a high
enough energy that the differential cross section be-
comes independent of F,, as discussed in the context of
Eqns. (2)—(6). This means that the energy event distri-
bution, d®/dFE,, in Eqn. (20) factorizes into a rescaling of
the normalization factor A/. This simplification does not
extend to the ANL and BNL datasets, which have event
distributions that span much lower energy ranges. For
these experiments, altering the neutrino flux amounts to
uncontrolled changes to the form factor shape.

The integration over Q2 and E,, depends on both con-
tinuous functions as well as on binned datasets. The bin
widths are sufficiently coarse that the continuous func-
tions can change substantially over a single bin, which
can lead to systematic effects due to binning. To sup-
press this effect, the data bins are subdivided to a finer
resolution, and the binned data are kept constant over
the entire coarse bin width. The functions are then com-
puted at the bin center of each fine bin and summed over
all bins.

To be explicit, the integration over the event distribu-



tion to obtain the flux is approximated as

dd dO’N

bin j
dN
dE,

Z AEu,k @(Eu,k; QQ)‘| ,

2
bin k€bin j a(Eyr) dQ

(23)

where AE), ;. is the bin width of the fine bin k within
coarse bin j and E, j is the energy at the center of fine
bin k. A similar procedure is applied for the integral over
Q? bins,

l [ r@r@ 5 e QQ)]

dQ2 bin 4
do
=Y AQUQDERQR) o (B QD) (21)
bin k&bin 4

In both cases, a resolution 10 times finer than the coarse
binning was sufficiently fine that further subbinning had
a negligible effect on fit results.

F. Handling Differential Cross Sections

The BEBC and MINERvA datasets both report flux-
integrated differential cross sections that can be abso-
lutely normalized. Both BEBC and MINERvVA also span
ranges of F,, where the differential cross section is approx-
imately energy independent. As a consequence, modifica-
tions to the flux are largely absorbed by any uncertainty
associated with the absolute normalization of the data.
For both of these experiments, the flux-integrated differ-
ential cross section d&<N’D)/dQ2 for bin ¢ with either a
nucleon (N) or deuterium (D) target is

AQ?

do(n,p) _/\7[ 2 2/
00 ] =5 | d@RQ) [ az,

dd don
dEl, (EU)TCP(EW Q2)‘| . (25)

The denominator includes the flux integrated over en-

ergy,
~ [ar,

The efficiency correction discussed in Sect. IID 4 are not

included in either the MINERvA or BEBC datasets.
Like with the event distributions, the integrals in

Eqn. (25) are discretized on a finer resolution to reduce

(26)

dd
=2 AP

binning systematics. The relevant integrals are

dd don
U i, P ag <E”’Q2>] "

do don
] L5, petgne] o
bin ke€bin j

and again Eqn. (24) but with f(Q?) =1 fixed.

There are a few differences between BEBC and
MINERvA worth noting. For the BEBC dataset, the nor-
malization factor A is given in Eqn. (15), which includes
the flux uncertainty. The deuterium correction R(Q?)
is the same as used in the other deuterium datasets, as
discussed in Sect. IID 5. For the MINERvVA dataset, the
normalization is instead fixed to N' = 1 and the deu-
terium correction taken to be R(Q?) = 1. Any uncer-
tainty in the flux is included in the covariance matrix
reported by the MINERvVA collaboration. In addition,
the antineutrino-nucleon differential cross section is used
for doy /dQ? rather than the neutrino-nucleon differen-
tial cross section used in BEBC.

III. FITTING

In this section, the results of fits are discussed. In par-
ticular, the compatibility of the input datasets is scru-
tinized to determine the most accurate depiction of the
neutrino-nucleon quasielastic axial form factor and its
uncertainty.

The default set of parameters used in this reference are
listed in Tab. II.

A. L—Curve Studies and Parameterization
Selection

One of the first tasks is to select a nominal parame-
terization to use for the form factor. This includes the

Parameter Ref. [8] This work
ga 1.2723 1.2754 [10]
te 9. (0.14 GeV)? 9-(0.134 GeV)?
to —0.28 GeV? —0.50 GeV?

# sum rules 4 4
M- 0.1395702 GeV 0.1395702 GeV
my 0.1057 GeV| 0.1056583755 GeV
Lp 2.7928 2.7928
s —1.9130 —1.9130
Mn 0.9389 GeV| 0.93891875434 GeV

cos ¢ 0.9743 0.9743
Gr 1.166 x 107° GeV~?[1.166 x 107> GeV >
Vector FFs BBBAO5 [28] Borah et al. [29]

TABLE II. A list of parameters needed to evaluate the differ-
ential cross sections. The first column gives the fit parameter,
the second column lists the parameters used in Ref. [8], and
the third column gives the parameters used in this work.



selection of ¢y and kpyax for use in the following fits com-
paring datasets. The sensitivity to these inputs will de-
pend on how strongly prior constraints on parameters of
the z expansion are enforced, and this strength is con-
trolled by the parameter A in Eqn. (12).

In previous work [8], the penalty strength A was as-
sumed based on arguments from unitarity constraints.
In this work, a data-driven L-curve approach [50, 51] will
be employed to select A in order to avoid bias in the fit
parameters. It is worth noting that either choice is an
acceptable heuristic and ideally any results should not
depend strongly on such a choice.

The L-curve approach compares the data contribution
Xata Versus the penalty contribution X2, under vari-
ations of the penalty A to find the point where the two
competing x? constraints are balanced. A penalty term
that is too strong may introduce bias into the fit results,
while a weak penalty with too many fit parameters could
result in overfitting. When some parameters are con-
strained primarily by the penalty term, a healthy L-curve
will exhibit an L-shaped bend and the “optimal” choice
is taken at the point with a minimum radius of curvature.
If few enough parameters are used, the Xgenalty term may
go to 0 as A — 0 without exhibiting a bend, indicating
that no penalty term is required. Additional parameters
are warranted as long as the corresponding change to the
augmented 2,

2 2 2
Xaug = Xdata + Xpenalty
Emax

= X?iata + A Z
k=1

is commensurate with the decrease in the fit degrees
of freedom to result in an improved fit quality: for
each additional fit parameter, Xﬁug /DoF should decrease,
where DoF is the number of degrees of freedom. For
this work, x3,. includes the squared residuals from
the usual theory-data differences in the differential cross
sections as well as statistical uncertainties for the flux
(Eqn. (14)) and priors for the efficiency corrections
(Eqn. (16)). xf)enalty includes only the regularization for
the z expansion parameters and is defined in Eqn. (12).

The fit L-curve for the MINERvVA dataset in isolation
is plotted in Fig. 1. This plot uses ty = —0.5 GeV?
with various choices of A and kpna.x. The kpax = 5
and kpyax = 6 curves exhibit no L-shape, indicating that
the parameterizations are sufficiently well constrained by
data that no regularization term is needed. The value of
Xﬁata for A = 0 only decreases by 0.2 when transitioning
from kmax = 5 t0 kpax = 6. The k2 = 6 parameteriza-
tion (with 2 free parameters) produces only a marginally
better x3,,, than the kmax = 5 parameterization (with
1 free parameter). The corresponding goodness-of-fit,
xﬁug /DoF, increases from kpax = 5 t0 kmax = 6, demon-
strating a preference for ky.x = 5. The expected L-shape
curve appears for k. > 7 with a point of minimum cur-
vature around A = 0.2. Additional fluctuation is seen in
the left panel of Fig. 1, in particular for ky.x = 8 and

2
; (28)

a

k
a0k

A =~ 1073, indicating that the prior terms are not con-
straining enough to prevent the fit from falling into an
unrealistic minimum.

Fig. 2 similarly shows L-curve plots for combined fits
to all of the deuterium datasets. The two panels show
the effect of different Q2. cuts on the L-curves for
these datasets. Like the MINERvA dataset, the fits
with knax = 5 and kpax = 6 do not exhibit a distinc-
tive L-shape, indicating that no penalty (A = 0) is pre-
ferred. Unlike with the MINERvVA dataset alone, there is
a more substantial decrease in Xﬁata for kmax = 6 versus
kmax = 5. These trends are exhibited for both Q2 cuts.
In the left panel (Q2,, = 0.06 GeV? cut), the kpayx = 7
fit does exhibit a small L-shape around A =~ 0.02 before
sz)enalty again decreases with A all the way to 0, indicating
preference for a small regularization. kp.x = 8 has a
distinct L-shape bend around A =~ 0.1 that denotes a
clear preference for regularization. In the right panel
(Q3;, = 0.20 GeV? cut), both kmax = 7 and kpax = 8
behave as they do in the left panel, showing only slight
preference for a nonzero \. For the Q2 = 0.06 GeV?
cut, the fits prefer regularized knax = 7 with A = 0.05,
which has Xfmg /DoF = 1.09, over unregularized kpax = 6

with qug /DoF ~ 1.12. This slight preference disappears
for the Q2. = 0.20 GeV? cut, and again kpax = 6 with

min
no regularization is the preferred fit strategy.

Although other parameterizations were tested, includ-
ing variations of the choices for kumax, to, A, and the
included datasets, no appreciable departures from the
general pictures described in Figs. 1 and 2 were seen.
In isolation, the BEBC dataset L-curve behaves much
like the MINERvVA dataset does in Fig. 1. The L-curves
for the deuterium event distributions without the BEBC
dataset are very similar to those seen with all of the deu-
terium datasets together, shown in Fig. 2. Including all
five datasets together again reproduces the same picture.
The values of to € {0, —0.28, —0.50} GeV? were tested to
look for different preferred choices of values for k. and
A, but no additional concerns arise for these choices.

Based on the considerations in this section, there are
a few compromises that perform acceptably across all fit
data. The two choices that will be considered henceforth,
both with ¢t = —0.50 GeV?, are

1. kmax = 6 with no regularization (A = 0), and
2. kpmax = 7 with A =0.1.

The former has the advantage of not being subject to de-
pendence on the choice of regularization, while the latter
gives a form factor parameterization with more freedom
and presumably more conservative uncertainties. Both
choices produce fits with similar fit quality in general,
although the only instances where the ky.x = 7 fits are

preferred occur for the Q2. = 0.06 GeV? cut. No oc-
currences for Q2. = 0.20 GeV? were found where the

change in x3.,, was sufficient to offset the decrease in
the degrees of freedom. The value to = —0.50 GeV? is
chosen to better captures some of the sensitivity to higher
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and the right plot the Q2;, = 0.20 GeV? cut.

Q? from the MINERVA result. This choice of ¢ restricts
the range 0 < Q? < 2.55 GeV? containing the majority
of the events to satisfy |z| < 0.34, and has a maximal
2(Q% = 10 GeV?) ~ 0.60.

B. x? Compatibility Tests

The difference between data y? values are used to com-
pute p values in order to assess the compatibility between
different fit assumptions. A 1-degree of freedom x? test
is constructed from the difference

AX® = XA — XA — XB (29)

where X%, %, and x4 | p are respectively the Xaata from
fits to dataset A, dataset B, and both datasets A and
B together. Two datasets that produce a p value > 0.05
are considered to be compatible with each other and may
be combined in a single fit without concern.

C. Minimum Q? Cuts and Regularization
Dependence

1.  Fvent Distribution Datasets

In the ANL, BNL, and FNAL deuterium datasets, the
low-Q? region requires the most care due to its sensitivity
to systematic effects. There are a few considerations to
be conscious of:

1. The tracks from the struck proton can be too short
to reconstruct reliably at low Q?, leading to poor ef-
ficiency and inaccurate characterization of the kine-
matics. Reference [14] estimates that the track re-
construction efficiency is about 89 + 7% for events
in the range 0.05 < Q2 < 0.10 GeV?. The effi-
ciency correction has been added to alleviate some
of this effect. Although this problem will be worst
at low Q?, resolution is in principle a concern at all
2, and the papers describing the deuterium bub-
ble chamber measurements give little insight into
the treatment, save a comment in the FNAL pa-
per stating that they only consider events where
Ap/p < 0.5 [16].

2. The spectator proton also cannot be reliably mea-



sured when it has small outgoing momentum. For
momenta below 0.1 GeV /¢, nearly all of the spec-
tator protons are missed. Fits are employed to
extract spectator momenta for these “two-prong”
events assuming values centered at 0 and prior
widths of around +50 MeV /c. The distributions
are typically compared to a Hulthén wavefunc-
tion [52-54] to demonstrate the accuracy of the
fit, but the majority of the events fall into the re-
gion where fits must be used for at least one of
the proton tracks. The Hulthén wavefunction un-
derpredicts the number of spectator protons in the
high-momentum region where both protons can be
directly observed. This high-momentum discrep-
ancy is attributed to final state interactions in the
literature.

3. The corrections due to deuterium effects are as-
sumed to be largest at low Q?, due to Pauli ex-
clusion principle for the low-momentum outgoing
protons. The corresponding deuterium effect essen-
tially turns off above Q2 > 0.15 GeV? in corrections
applied to the data.

4. Even with the corrections discussed here, the dif-
ferential cross section data still exhibit a turnover
at low-Q? that is too sharp to be well-described by
the fits.

To test the dependence on systematics due to the in-
clusion of low-Q? region, two different ranges of Q2 are
considered for the ANL, BNL, and FNAL deuterium
datasets, as in Ref. [3]. The two Q2 -cuts applied
both with full regularization (A = 1, left) and unregu-
larized (A = 0, right) are plotted in Fig. 3. The choice of

2. =0.06 GeV? was taken as the default in Ref. [3],
which appears in Fig. 3 as the unfilled region bounded
by two solid black lines. This is most similar to the teal
shaded region, which only differs from the previously
published results by choice of vector form factors and
some fixed parameter inputs. This selection discards the
first @2 bin, which is consistent with the practice em-
ployed in the original experimental publications. The
other cut, @2, = 0.20 GeV? was selected in Ref. [3]
after considering several cuts and finding the minimum
cut that would suppress sensitivity to kmax-

The left panel of Fig. 3 shows some moderate depen-
dence on the minimum Q2 cut. This was previously re-
ported in Ref. [8], where the inability of the fit function
to describe the low-Q? differential cross section data re-
sulted in a significant degradation of the goodness-of-fit.
When the constraint from the regularization is removed
(right panel of Fig. 3), this inconsistency gets consider-
ably worse. This is a consequence of an approximate
degeneracy between the floating normalizations for the
event distribution datasets (discussed in Sect. IID 3) and
the axial form factor shape. Without the constraint of
the z expansion parameter regularization, the a, param-
eters are allowed to float arbitrarily far from 0 to deform
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Qrin = 0.06 GeV? |Q?;, = 0.20 GeV?
Fit x?/DoF DAy2 x?/DoF PAx2
BEBC 6.1/ 6 6.1/ 6
Deuterium 108.3/100 91.8/ 94
Deuterium+BEBC|116.8/108 99.5/102
Ax? 25/ 1 011] 1.6/ 1 0.20

TABLE III. Ax? tests of compatibility for the deuterium
event distributions and BEBC dataset. These values are for
fits with kmax = 6 and A = 0. The two Q2 values are shown
in the pairs of columns. Within the left column of each pair of
columns, the x3,... for the two datasets in isolation are listed,
then the 2., for the combined fit, and finally the Ax? from
Eqn. (29). The right column of each pair shows the computed
p value for the Ax? with 1 degree of freedom.

the shape and better fit the curvature of the form factor.
The change in the form factor scale from modifying the
curvature is then absorbed into the floating normaliza-
tions.

2. Addition of BEBC Dataset

A solution is needed for the degeneracy between the
floating normalization and the axial form factor shape.
A solution that does not appeal to introduction of a reg-
ularization would be preferable to one that does. For-
tunately, the datasets with a flux-integrated differential
cross section are absolutely normalized to within their
flux uncertainty and are therefore not as sensitive to this
degeneracy as the ANL, BNL, and FNAL datasets fit
with a floating normalization. The BEBC dataset can
therefore act as a source of constraint on the overall nor-
malization of the event distribution datasets.

The effect of the addition of the BEBC dataset to a
combined fit with the other event distribution datasets is
shown in Fig. 4. The addition of the BEBC dataset has
a nontrivial impact on the constraint of the form factor
normalization, partially resolving the degeneracy. With-
out the BEBC dataset, the form factor shape at moder-
ate Q2 disagrees with the BEBC dataset by upwards of
2—30. After the addition of the BEBC dataset, the form
factor is stable around the BEBC normalization within
about 2¢. This situation is summarized in Fig. 5, where
the BEBC dataset and combined fits are shown together.

The results of the Ax? compatibility between the
BEBC dataset and the other deuterium datasets are
shown in Tabs. IIT and IV. In all cases, there is reasonable
compatibility between the datasets. Better compatibility
seen for Q2 = 0.20 GeV?, which has better goodness-
of-fit than the Q2 = 0.06 GeV? fit, and for the regu-
larized kmax = 7 fit, which has more fit parameters than
the unregularized kpn.x = 6 fit. The BEBC dataset is
not subject to the Q2 cut and so the improvement in
compatibility from changing the Q2 cut is entirely due
to the removal of the poorly-described low-Q? region in
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Plots of the axial form factor as a function of the 4-momentum transfer Q2. The left panel shows the regularized fits

with A = 1 and kmax = 7. The right panel shows the unregularized fits with A = 0 and kmax = 6. The cut at Q2,;, = 0.06 GeV?
is given by the teal shaded region bounded by a dashed line, and the cut at QZ;, = 0.20 GeV? by the orange shaded region
bounded by the dot-dashed line. The result from Ref. [3], which has kmax = 8 and A = 1, is given by the unfilled region bounded

by solid black lines.
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The fit axial form factors both before and after the addition of the BEBC dataset to the other event distributions.

In these fits, kmax = 6 is chosen and the z expansion parameters are unregularized (A = 0). The left (right) panel shows the
form factors obtained when the 0.06 GeV? (0.20 GeV?) cuts are applied to the event distribution datasets. The teal shaded
region bounded by dashed lines indicates the fit only to the BEBC dataset (the same in both panels). The orange shaded
region bounded by the dot-dashed line indicates the event-distribution datasets that were shown in the right panel of Fig. 3.
The blue-violet shaded region bounded by the dotted line is the combined fit including both the event-distribution datasets
and the BEBC dataset. The result from Ref. [8] is given by the unfilled region bounded by solid black lines.
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FIG. 5.  The fit axial form factors for the BEBC dataset

in isolation (teal shading, bounded by dashed line) and the
combined fit with the event distribution datasets. The orange
shaded region bounded by the dot-dashed line is the same
joint-fit result shown in the left panel of Fig. 4. The blue-
violet shaded region bounded by the dotted line is the same
joint-fit result shown in the right panel of Fig. 4.

2., =0.06 GeV?|Q2;, = 0.20 GeV?
Fit X°/DoF  payz| X°/DoF  paye
BEBC 6.1/ 12 6.1/ 12
Deuterium 108.3/106 93.2/100
Deuterium+BEBC|116.2/114 100.2/108
Ax? 1.8/ 1 018 09/ 1 034

TABLE IV. The same as Tab. III, but for kmax = 7 and
A=0.1.

the event distribution datasets.

3. All Deuterium versus MINERvA

The Ax? tests from Sect. ITI C 2 demonstrate that the
complete set of four deuterium results are sufficiently
compatible that they can be averaged together. How-



Q2 = 0.06 GeV?| Q2%,, = 0.20 GeV?
Fit x*/DoF  payz| x°/DoF [N
All Deuterium |116.8/108 99.5/102
MINERvA 9.2/ 11 9.2/ 11
All 130.4/120 121.1/114
Ax? 44/ 1  004| 124/ 14x107*

TABLE V. Ax? tests of compatibility comparing all deu-
terium datasets versus the MINERvVA dataset. The format of
this table is the same as for Tab. III. These values are for fits
with kmax =6 and A = 0.

Q2 = 0.06 GeV?| Q2,, = 0.20 GeV?
Fit x?/DoF  payz| x°/DoF Pay?
All Deuterium [116.2/114 100.2/108
MINERvVA 9.0/ 17 9.0/ 17
All 129.2/126 121.3/120
Ax? 40/ 1 005|121/ 15x107*

TABLE VI. The same as Tab. V, except for fits with kmax = 7
and A = 0.1.

ever, the two different Q2. cuts still exhibit a ~ 30

shift due to the apparent degeneracy between normaliza-
tion and form factor shape, seen in Fig. 5. Ideally, if
the MINERvVA hydrogen results are compatible with the
complete set of deuterium results, these additional data
would pin down the remnant degeneracy and remove this
uncertainty, providing a precise axial form factor deter-
mination from all elementary target data sources. The
compatibility between these datasets will be explored in
more detail in this subsection.

A comparison of the MINERvVA dataset to the rest of
the deuterium datasets is shown in Fig. 6. Both sets of
data have comparable constraints on the axial form fac-
tor uncertainty. However, a clear discrepancy between
MINERvVA and the deuterium can be seen at moder-
ate and high Q2 values for both Q2 cuts. MINERvA
prefers a slower falloff than the deuterium datasets, larger
by > 20 even for the lower Q2. cutoff. The combined
fit including all datasets is dominated by the deuterium
fits, exhibiting a slight pull toward the MINERvVA but
remaining mostly pinned to the deuterium result.

The Ax? compatibility tests comparing the MINERvA
dataset to the deuterium datasets are shown in Tabs. V
and VI. Although the p values are nearly acceptable for
the Q2,, = 0.06 GeV? fits, and in fact the kpax = 7
regularized fit in Tab. VI rounds up to pa,2 = 0.05,
the agreement is artificial due to the additional poorly-
described fit data included in the lower Q% cut range.
There are 6 data bins that are cut when increasing the
cut from Q2 = 0.06 GeV* to 0.20 GeV2. The x3,,, of
the “All Deuterium” fit in Tab. V decreases by 17.3 when
those low-Q? data are cut, which is not commensurate
with the decrease in the number of bins.

To further illustrate this incompatibility, consider the

12

changes to x? from inclusion of the MINERvA dataset.
Comparing the “All Deuterium” fits to the “All” fits in
Tab. V, introduction of the MINERvVA dataset (with 14
bins) increases x3.,, by only 13.6 for Q2. = 0.06 GeV?,
versus 21.6 for Q2. = 0.20 GeV?. The Ax? from each
of these fit comparisons is almost entirely attributed
to shifting the MINERvA data to accommodate the
deuterium datasets: the contribution of the MINERvA
dataset to x3,, of the “All” fit is 13.8 for Q2, =
0.06 GeV? and 19.2 for Q2 = 0.20 GeV? (a difference
from the MINERvVA fit Xﬁata in isolation by 4.6 and 10.0
respectively).

The Ax? difference for Q2. = 0.06 GeV? is therefore
less than for Q2 = 0.20 GeV? only because poorly-
described low-Q? data tend to bias the axial form factor
toward a shape that is not as far from the preferred shape
of the MINERvVA dataset. When these data are cut, the
preferred “All Deuterium” fit result shifts farther from
the preferred MINERvVA fit result. The p value degrades
more significantly when the MINERvA data are added
to the higher @2, cut fit and the deuterium datasets
are no longer considered to be compatible. Given other
doubts cast by corrections due to the spectator nucleon
in the deuterium nucleus, the unknown absolute normal-
ization of the data, and potentially poorly-characterized
corrections to the low-Q? data, the deuterium datasets
should be viewed with some skepticism.

This conclusion also comes in the historical context
of predictions from LQCD results [11, 33-37]. LQCD
has consistently predicted a slower falloff of the axial
form factor with respect to the other deuterium results,
a conclusion that was presented concurrent with Monte
Carlo tuning efforts with similar conclusions and be-
fore the public release of the MINERvVA dataset. These
statements from LQCD come after significant investment
from multiple groups, including internal self-consistency
checks as well as nontrivial cross-checks between different
collaborations. Systematic effects from these calculations
are understood and well-controlled. More detailed dis-
cussion about these comparisons is deferred to the sister
paper, Ref. [10].

4. MINERvA-BEBC Compatibility

Since agreement between MINERvA and the other
deuterium datasets is contingent on inclusion of the
poorly-fit low Q? bins, the MINERvA dataset is con-
sidered to be inconsistent with the deuterium datasets.
The lost correlations between Q2 and E, of these his-
torical deuterium event data and the absence of nuclear
corrections in the MINERvA dataset lend credence to
the MINERvVA as the more accurate estimate of the form
factor and its uncertainty. However, the BEBC dataset,
which is presented as a differential cross section rather
than an unnormalized event distribution and has a larger
overall uncertainty when including the flux uncertainty,
might still be sufficiently compatible with the MINERvA
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FIG. 6.

Axial form factor results for fits comparing the complete set of deuterium data versus the MINERvVA dataset. In

these fits, kmax = 6 is chosen and the z expansion parameters are unregularized (A = 0). The left (right) panel shows the
form factors obtained when the 0.06 GeV? (0.20 GeV?) cuts are applied to the event distribution datasets. The teal shaded

region bounded by dashed lines indicates the fit to the complete set of deuterium results, subject to the Qi

2 i cut. The orange

shaded region bounded by the dot-dashed line shows the fit to the MINERvA dataset in isolation (same in both panels). The
blue-violet shaded region bounded by the dotted line is the combined fit to all datasets. The result from Ref. [3] is given by
the unfilled region bounded by solid black lines.

Emax =6 A = 0.0|kmax = 7, A= 0.1
Fit xX°/DoF  pay2| X?/DoF  pa,e2
BEBC 6.1/ 6 6.1/ 12
MINERvVA 9.2/ 11 9.0/ 17
MINERvA+BEBC|21.2/ 18 20.8/ 24
Ax? 59/ 1 0.01| 56/ 1 0.02

TABLE VII. Table for Ax? tests of compatibility for BEBC
and MINERvA datasets, in the same format as Tab. ITI. The
two pairs of columns are for unregularized kmax = 6 and reg-
ularized kmax = 7 fits. These fits assume a 10% uncertainty
on the flux normalization of the BEBC dataset.

dataset to consider separately. This possibility is consid-
ered in this subsection.

The Ax? tests for BEBC and MINERVA are given in
Tab. VII. In these fits, a 10% flux uncertainty is assumed
from the BEBC dataset. The same trend that was ob-
served in Sect. III C 3 is seen again when the other deu-
terium datasets are removed. The combined fit to both
BEBC and MINERvVA also produces a modest increase
in X?iata over the two datasets individually, with nearly
all of the increase coming from the MINERvVA contribu-
tion to the x2. For completeness, the k., = 6 unreg-
ularized combined fit contributes x3 ,, ~ 14.3 from the
MINERvVA dataset, in contrast to only x3,,, ~ 6.8 from
BEBC (compared to 9.2 and 6.1, respectively, from the
second column of Tab. VII). Tab. VIII provides the same
tests, but relaxes the BEBC normalization uncertainty
to 20%. No substantial difference is seen for these fits,
and the p values for Ax? still fall short of the acceptable
range for compatibility.

This concludes the comparison of different datasets.
Although the deuterium datasets are in agreement with
each other, there is also a disagreement between the hy-
drogen dataset from MINERvVA and the other deuterium

kmax =6 A =0.0kmax =7, A =0.1
Fit x°/DoF  pay2| X?/DoF  pa,e
BEBC 6.0/ 6 6.1/ 12
MINERvVA 9.2/ 11 9.0/ 17
MINERvA+BEBC|19.6/ 18 19.2/ 24
Ax? 45/ 1  0.03] 41/ 1 0.04
TABLE VIII. The same as Tab. VII, but assuming a 20%

uncertainty on the flux normalization of the BEBC dataset.

datasets. This inconsistency implies that the form for
R(Q?), or ratio of the deuterium to hydrogen cross sec-
tion, is different from what is assumed. This shape de-
pendence will be nontrivial to sort out because the differ-
ential cross section bins with Q2 are smeared out under
the integration over the neutrino flux at low F,. More
neutrino scattering measurements using hydrogen and
deuterium targets will be necessary to sort out deuterium
effects from flux effects. Until the time of these measure-
ments, LQCD would be useful as an additional source of
constraint on the nucleon axial form factor.

D. Systematics

In this section, systematics of the form factors are stud-
ied. Sect. IIID 1 examines the effects of changing ¢,
kmax, and A over the fits. Sect. ITI D 2 reports the changes
and uncertainties given when replacing the vector form
factor parameterization from Ref. [28] (referred to as the
BBBAO05 parameterization) with the z expansion param-
eterization from Ref. [29].
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FIG. 7. The MINERvA dataset fit to different choices of
kmax and X. The kmax = 6 fit is left unregularized (A = 0),
while kmax = 7 requires a modest regularization parameter of
A = 0.1, as described in the text of Sect. III A. For reference,
the form factor result from Ref. [8] is plotted as an unfilled
region bounded by black lines.

1. Parameterization Choices

In principle, the parameterization choice should be in-
sensitive to the choice of fit parameters g, kmax, and .
No statistically significant shifts are observed under the
different fit choices made in this work.

Fig. 7 shows the effects of choosing between the dif-
ferent truncations for the axial form factor power series.
The value of X is adjusted based on the preferred choices
from the L-curve studies of Sect. ITT A. With the adjust-
ment of A\, overfitting is avoided and the two results can
be compared to each other directly. The two fits agree
very well over the entire interesting Q? range with mini-
mal deviation.

The selection of t; should be selected as a compro-
mise to minimize the maximum value of |z| in a range
of Q2 that is interesting for experiments. The choice
to = —0.50 GeV? used in this work more appropriately
cover the range 0 < Q? < 6.0 GeV? measured by the
MINERvVA experiment than the choice ty = —0.28 GeV?
used in Ref. [¢]. The maximum value of |z| (at Q? =
6.0 GeV?) for this choice is around 0.51, versus |z| ~ 0.58
for tg = —0.28 GeV? and |z| ~ 0.78 for to = 0. This
choice is also optimized for evaluations within the range
0 < Q% < 2.0 GeV?, where |z| < 0.33, which is rele-
vant for applications to long baseline neutrino oscillation
experiments.

Fig. 8 shows the shifts of using a different ¢ty expan-
sion point for the z expansion parameterizations. For
to = —0.50 GeV? and tg = —0.28 G:eVz7 unregularized
parameterizations with k.. = 6 are appropriate to de-
scribe the form factor shape. When ¢y = 0, the range of
|z| is large enough such that a k. = 6 parameterization
is no longer sufficient to describe the shape. The data are
also not constraining enough to avoid overfitting without
introduction of a light regularization term as well. How-
ever, when both of these considerations are taken into
account, the final form factor shape is consistent with
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FIG. 8. The same as Fig. 8, but fit to different choices of to.
The fits with to = —0.50 GeV? and to = —0.28 GeV? have
kmax = 6 and A = 0. The fit to to = 0 requires an additional
change of kmax and .
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FIG. 9. The MINERvVA dataset fit to both the BBBA05
vector form factor parameterization [28] (teal shading bor-
dered by a solid line) and the z expansion vector form factor
parameterization from Ref. [29] (orange shading bordered by
a dashed line). For reference, the form factor result from
Ref. [8], fit to the deuterium data, is plotted as an unfilled
region bounded by black lines.

the other two choices of tg.

2. Vector Form Factors

This subsection explores the effects of vector form fac-
tor parameterizations on the axial form factor shape
and uncertainty. In Fig. 9, the result of replacing the
BBBAO5 parameterization for the vector form factors
with the z expansion parameterization. As expected, no
substantial difference is seen between the two choices.
The axial form factor uncertainty is considerably larger
than the difference between the parameterizations.

The uncertainty from the z expansion parameteriza-
tion is propagated through the fits using principal com-
ponent analysis with the covariance matrix reported in
Ref. [29]. The mean values of the vector form factor
parameters are shifted by the principal components ex-
tracted from the covariance matrix, then new fits are
obtained. After the fit, the difference between the mean



values for the axial form factor parameters of the nominal
and shifted fits is taken as an additional uncertainty. The
uncertainties from each of the 8 principal components are
then summed in quadrature.

IV. RESULTS

Various fit results are collected in this section. The
central values with their uncertainties are reported along
with the means for the full set of coefficients, including
those constrained by sum rules, and the covariances of the
fit parameters. The values listed here combined with the
parameters in Tab. II are sufficient to reproduce the form
factor curves shown in plots in this work. In addition,
the axial radius squared is provided for comparison with
experiments that are sensitive to low-Q? behavior of the
form factor. The squared radius is related to the slope
at Q2 = 0 through the relation

6 dFa

T dO2
ga dQ 020

= (30)

The fits with k. = 6 and A = 0 are the recommended
optimal choice of parameters. This is motivated by two
observations:

1. the L-curve study in Sect. IITA for fits to the
MINERvA dataset show that moving from an un-
regularized kpax = 5 fit to an unregularized kyax =
6 fit decreases Xiug by only about 0.2, which when
considered in isolation is insufficient to justify the
increase kpyax = 6; and

2. although the MINERvVA fits prefer k.« = 5, the
p value is not significantly diminished at kpa.x =
6 and so comparisons with LQCD, which prefer
kmax = 6, can be performed without adversely im-
pacting the fit quality.

For evaluating systematics due to finite truncation of the
z expansion parameterizations, the values for kpa.x = 7
and A = 0.1 fits (or A = 0 for LQCD alone) are also
reported.

In all cases considered, the value of the coefficient ay is
consistent when moving from a kypax = 6 t0 kpax = 7 fit.
The value of as and r% can change by > 20, suggesting
that higher-order form factor shape effects are still not
fully captured by truncation to kmax = 6. The degraded
p values for kna.x = 7 suggest that the data are not suf-
ficiently constraining enough to justify the additional fit
parameter and that the slight tensions might be the re-
sult of overfitting rather than the true data preference.

A. MINERvVA Hydrogen Fit Result

The final results from fits to the MINERvVA data are
listed in this subsection. The knax = 6, A = 0 fit yields
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the 2z expansion parameters
(a1,a2) = (—1.65(24),0.94(30)) (31)
with the covariance matrix

< 0.05554150 0.03262482) (32)

—0.03262482  0.09151761

With the sum rule constraints applied, the central values
of the full set of coefficients are

(ao, ey aﬁ)
( 0.61490770, —1.64778080, 0.94181417,
= 0.41239729, 0.36611559, —1.18722194, (33)

0.49976799 ).

The axial radius squared obtained from this parameteri-
zation is

4 = 0.575(222) fm?. (34)

This choice has a well-defined p value ~ 0.69 from y? =~
9.16 and 12 degrees of freedom.

The kmax = 7 fit with the regularization parameter
A = 0.1 is also listed as a comparison point. The fit
central values are

(a1,a2,a3) = (—1.69(17),0.81(34),0.9(1.2))  (35)
with the covariance matrix

0.02771279 —0.00093839 —0.19136214
—0.00093839  0.11854816 —0.12082981 | . (36)
—0.19136214 —0.12082981  1.45823056

With the sum rule constraints applied, the central values
of the full set of coefficients are

(ao, ey CL7)
0.62174048, —1.69373431, 0.80639393,
= 0.87442257,  0.55213983, —2.61742963, (37)

1.85900234, —0.40253521 ) .

The axial radius squared obtained from this parameteri-
zation is

% = 0.565(149) fm. (38)

Treating the priors as additional data, the fit give a
p value ~ 0.96 from an augmented x? ~ 9.14 and 18
degrees of freedom. Ignoring the priors yields p value ~
0.62 from data x? ~ 8.97 and 11 degrees of freedom.

B. LQCD Fit Result

For comparison with the results in this work, the result
of the sister paper [16] is reproduced here. The needed fit



parameters match those listed in Tab. II. The kp.x = 6,
A =0 fit is

(a1,a2) = (= 1.721(52),0.31(13)) (39)

with the covariance matrix

—0.00562374  0.01596000 (40)

( 0.00265598 —0.00562374)
With the sum rule constraints applied, the full set of
coefficients are

(ao,...,aﬁ)
( 0.71742019, —1.72089706, 0.30982708,
= 1.62125837, —0.27506993, —1.25297945, (41)
0.60044079 ).

The axial radius squared obtained from this parameteri-
zation is

4 = 0.359(32) fm®. (42)

The unknown correlations between LQCD results prevent
the assignment of a definitive p value. Instead, covari-
ance derating [55] is used to estimate a 99% confidence
interval upper bound on the goodness-of-fit. This lim-
its p value < 0.79. Assuming the unknown correlations
are identically 0, the p value can be computed directly as
p ~ 0.57 from x? ~ 6.72 and 8 degrees of freedom.
The kpax =7, A =0 fit is

(a1,a2,a3) = (—1.97(31),—0.36(81),4.1(3.0)) ~ (43)
with the covariance matrix

0.09596711  0.23950162 —0.91111930
0.23950162  0.66309215 —2.34297335 | . (44)
—0.91111930 —2.34297335  8.72333989

With the sum rule constraints applied, the full set of
coefficients are

((LQ, ey Cl,7)
( 0.70215466, —1.97392451, —0.35657870,
= 4.06034067, 2.22750153, —12.61514172,

11.01777416, —3.06212608 ).
(45)

The axial radius squared obtained from this parameteri-
zation is

4 = 0.461(127) fm?. (46)

In this case, derating the goodness-of-fit limits p < 0.75
at 99% confidence. Assuming the unknown correlations
are all identically 0, p ~ 0.52 from y? ~ 6.16 and 7
degrees of freedom.
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C. Previous Deuterium Fit Result

In the interest of concrete comparisons, the deuterium
results from Ref. [8] with ¢, = —0.28 GeV? are con-
verted to a z expansion parameterization with t9 =
—0.50 GeV?. This is possible because the z expansion
power series coeflicients are exactly proportional to the
derivatives with respect to z at Q? = —tg (or z = 0). In
other words, a z expansion parameterization satisfies the
proportionality

o idkFA(Z)
k! dzk

z=0

ak (47)

Therefore, a translated z expansion parameterization ap-
proximating another parameterization can be obtained
by examining the central value and derivatives of an-
other form factor parameterization at Q2 = —t, using
the new z expansion’s definition of t3. For more details,
the reader is referred to Ref. [10].

Using the above prescription for translation, the
z expansion from Ref. [8] with kpax = 8 translated to
a parameterization with the values listed in Tab. IT and
kmax = 6 gives the coefficients

(al,ag) = ( —2.08(21), 1.90(37)) (48)
with the covariance matrix

< 0.04304942

002482393
0.02482393 ) : (49)

0.13790576

With the sum rule constraints applied, the central values
of the full set of coefficients are

(ao, ey a(;)
( 0.54264533, —2.08493637,
= 2.40319245, —5.88979056,
—1.01497601 ).

1.89831616,
4.14554900, (50)

This reproduces the form factor central value shape and
magnitude with no more than 2% fractional deviation
over the entire range 0-2 GeV?. The axial radius squared
obtained from this parameterization is

74 = 0.334(254) fm?, (51)

which is in agreement with the published value
0.46(22) fm?.

Using the above prescription for translation, the
z expansion from Ref. [8] with kpax = 8 translated to
a parameterization with the values listed in Tab. IT and
kmax = 7 gives the coefficients

(a1,a2,a3) = (—2.08(21),1.53(48),2.8(1.8))  (52)
with the covariance matrix

0.04304942  0.06034134 —0.36481368
0.06034134  0.23520236 —0.67627605 | . (53)
—0.36481368 —0.67627605  3.27220947



With the sum rule constraints applied, the central values
of the full set of coefficients are

(ao,...,a7)
( 0.54264533, —2.08493637, 1.53196776,
= 2.78626545, —3.75859858, —0.88298095, (54)
2.94795795, —1.08232059 )

This reproduces the form factor shape and magnitude
with no more than 3% fractional deviation over the range
0-1 GeV? and no more than 10% over the range 0-
2 GeV?. The axial radius squared obtained from this
parameterization is

4 = 0.434(215) fm?, (55)

which is in good agreement with the published value
0.46(22) fm?.

D. Combined Hydrogen—LQCD Fit Result

In this subsection, the MINERvA hydrogen data are
fit simultaneous with the LQCD results from Ref. [10].
These results are used to create a Ax? comparison with
which to assess the compatibility between the hydrogen
and LQCD.

The result for a simultaneous fit to the LQCD results
and the MINERvVA dataset with kpax = 6 and A = 0
yields

(al,ag) = (— 1.743(49),0.38(12)) (56)
with the covariance matrix

< 0.00241156 —0.00495246)

—0.00495246  0.01406075 (57)

With the sum rule constraints applied, the full set of
coeflicients are

(a07...,a6)

( 0.71070233, —1.74307738,  0.37944565,
1.69894456, —0.60326876, —0.95690585, (58)
0.51415945 ).

The axial radius squared obtained from this parameteri-
zation is

4 = 0.351(31) fm?. (59)

The derated goodness-of-fit yields p < 0.82. With the

unknown correlations set to 0, the goodness-of-fit is p ~

0.67 from data y? ~ 18.62 and 22 degrees of freedom.
Assuming kpax = 7 and A = 0, the result is

(a1,a2,a3) = ( —2.05(18),—0.55(51),4.8(1.7))  (60)
with the covariance matrix

0.03177240  0.07902640 —0.30141172
0.07902640  0.25545489 —0.81195679 | . (61)
—0.30141172 —0.81195679  2.92520812
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ignore unknown derate
Fit x°/DoF  pay2 x°/DOF pa,z
LQCD 6.7/ 8 4.7/ 8
MINERvVA 9.1/16 9.1/16
MINERvVA+LQCD/| 18.6/22 15.9/22
Ax? 2.7/ 1 010 21/ 1 0.15

TABLE IX. The Ax? fit compatibility test between the
MINERvVA and LQCD fits. Due to the presence of unknown
correlations between the LQCD results, the compatibility test
is split into two computations: the first (“ignore unknown”)
assumes that all of the unknown correlations are exactly 0,
and the second (“derate”) uses the covariance derating [55]
technique to extract a 99% confidence interval upper bound
on the p value from allowed covariance variations. For each
fit, the x* and DoF are reported. The Ax? from Eqn. (29) is
reported in the last line along with a p value for the 1 DoF
Ax? check.

With the sum rule constraints applied, the full set of
coefficients are

(ao, ey a7)
( 0.69703887, —2.04509311, —0.55053002,
= 4.75284430, 2.99942500, —15.97146005,

14.07720463, —3.95942961 ).
(62)

The axial radius squared obtained from this parameteri-
zation is

74 = 0.494(81) fm?. (63)

With this fit, the derated goodness-of-fit is p value < 0.90
at 99% confidence. Without correlations, the goodness-
of-fit is p ~ 0.81 from augmented y? ~ 15.31 and 21
degrees of freedom.

The Ax? compatibility comparison between the
MINERvA and LQCD datasets for the ky.x = 6 fits are
shown in Tab. IX. Both the tests when ignoring the un-
known correlations of the LQCD (labeled as “ignore un-
known”) and using the covariance derating (“derating”)
are listed. Although there is some apparent tension in
the Q2 shape of the two fits, the tension only has a mild
effect on the combined fit xy2. The resulting combined
fit is largely dominated by the LQCD fit such that the
increase in x?2 for the combined fit is almost entirely due
to the MINERVA residuals increasing. The p values for
both choices of correlation treatment are above the 5%
threshold to consider them compatible.

E. Summary of fits

The set of results described in this work is shown in
Fig. 10. As discussed in the manuscript, the deuterium
suffers from a strong dependence on the prior assump-
tions. As an attempt to capture the full spread of this
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FIG. 10. The top panel shows the final choices for the

axial form factor parameterizations after the fits discussed
in this work. The bottom panel shows those same param-
eterizations normalized to the deuterium result of Ref. [3].
The MINERvVA and LQCD Average fits are obtained from
Eqns. 31 and 39, respectively. The bounds for the curve la-
beled “Deuterium+BEBC (envelope)” are obtained from the
lower bound of the “Deuterium+BEBC (QZ;, = 0.20 GeV?)”
and the upper bound of the “Deuterium+BEBC (QZ;, =
0.06 GeV?)” curves in Fig. 5. The form factor curve from the
combined fit, Eqn. (56), only has minor deviations from the
LQCD fit and so is omitted for clarity.

dependence, the extreme bounds of the two Q2 cuts are

used to produce an uncertainty envelope for the datasets.
This spread would be even worse without the inclusion of
the BEBC dataset. Even with the inflated uncertainty,
the extreme bounds fall significantly below the other re-
sults at larger Q2 and more than 1o for even the results
of Ref. [¢]. Above Q? ~ 1.25 GeV?, the sign of the form
factor is not constrained at more than lo.

There is another zero parameter prediction of the axial
form factor in the literature based on an axial vector
meson dominance model [56]. It provides a prediction
which is consistent with the LQCD and MINERvA form
factors, within uncertainties of the model and these fit
results, albeit with a visibly larger form factor for Q% >
0.2 GeV? as shown in Fig. 11.

The values of 7% obtained during this work are listed
in Tab. X. There is an apparent trend that the squared
radius increases when moving from kpax = 6 to kpax =
7. However, the uncertainties of ky.x = 7 are generally
large enough that the shift remains less than 1lo. The
only exception is the combined MINERvA+LQCD fit,
which gives a mild 1.60 shift. The trend might argue
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FIG. 11. The same as the top panel of Fig. 10, but with the

addition of the Axial Vector Meson Dominance model (pink
shaded region with a triple-dash boundary).

3 /fm?
Flt kmax = 6 kmax = 7 Ref [ }
MINERVA 0.575(222) 0.565(149)
LQCD 0.359 (32) 0.461(127)
Deuterium 0.334(254) 0.434(215) 0.46(22)
MINERvA+LQCD[0.351 (31) 0.494 (81)

TABLE X. Summary of the 7% values obtained from fits
in this work for both choices of kmax. The MINERvVA fit
with kmax = 7 also imposes the regularization A = 0.1,
which accounts for the decrease in uncertainty in moving from
kmax = 6 t0 kmax = 7. Except for the row for deuterium,
which sets A = 1, all other fits use A = 0.

that truncating to knax = 6 is too small and that the fits
with kpnax = 7 would be more appropriate. This assertion
is not supported by the p values, which suggest that the
kmax = 7 fits does not improve the x? enough to warrant
an additional fit parameter.

The smaller 7“124 values from the k.« = 6 fits are con-
sistent with the extraction of r% from Ref. [15], which
claims 7% = 0.46(16) fm? in agreement with this work.

Other historical assessments of r%4 appealed to the
dipole parameterization for the axial form factor, which
doesn’t allow sufficient freedom to describe the form fac-
tor shape and leads to underestimated uncertainty. Such
works include deuterium scattering and pion electropro-
duction constraints from Ref. [7], which lists the values
r3 = 0.453(23) fm® and 73 = 0.454(14) fm?, respec-
tively, as well as neutrino-carbon scattering from the
MiniBooNE experiment [57] with 74 = 0.26(7) fm® ® and
the NOMAD experiment [55] with 3 = 0.42(5) fm?. For
a comprehensive list of previous axial radius calculations,
see Ref. [59].

The result of the fit to the MINERvVA hydrogen dataset
is significantly higher than the deuterium fit result above
Q? =~ 0.25 GeV? and above the fit result from Ref. [¢]

3 This is computed from an effective axial mass that is obtained
by modifying the nuclear binding energy.
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FIG. 12. The quasielastic cross section for the interaction

vuyn — p~p. The cross section assumes the same form fac-
tor choices used to perform the fits in this work. For all of
the fits, the curves for the central value and +1¢ uncertain-
ties are shown as three separate lines, with shading between
the uncertainty bounds. The deuterium fit (blue-violet dot-
ted) shows the full error envelope of the two QZ;, cuts. The
previous work of Ref. [8] (unfilled solid black) is shown for
comparison.

above Q2 ~ 0.6 GeVZ2. However, the value of % is con-
sistent between the hydrogen and deuterium datasets.
This suggests that the shape of the hydrogen data are
not well captured by the dipole parameterization, which
would need to follow closely with the result of Ref. [3] to
match the same slope at Q% = 0. This nontrivial shape
is possible to describe well with the z expansion param-
eterization. The agreement between the r% values also
suggests that measurements sensitive to only to low Q2
behavior of the form factor could not be used to make
strong inferences about the form factor shape at higher
Q.

The quasielastic cross section obtained from the fits in
this work are shown in Fig. 12. The Q?-dependence of the
form factors is integrated to produce a total cross section.
The slower Q? falloff of the LQCD and MINERVA results
therefore corresponds to a larger cross section, enhanced
by as much as 30-40% for the LQCD average compared
to the deuterium result.

V. DISCUSSION

In this work, neutrino scattering data from multiple
elementary target sources are examined to determine the
most up-to-date knowledge for the nucleon quasielas-
tic axial form factor. This work appeals to historic
deuterium bubble chamber datasets, a recent work by
the MINERvVA collaboration to extract the antineutrino-
hydrogen scattering cross section, and first principles
computations with LQCD. This builds upon the pre-
vious work of Ref. [3] and was prepared in conjunction
with the sister paper, Ref. [10].

There are a number of departures from the results of
the previous work of Ref. [8] that are notable. Of these,
the most significant is the heuristic used to choose a set
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of priors for the z expansion coefficients. In Ref. [8], the
priors were chosen to satisfy expectations from unitarity
preventing higher-order coefficients from being unnatu-
rally large compared to lower-order coefficients. As a
departure from that heuristic, this work uses the rela-
tionship between x3 ., and X}%enalty to choose the point
of lowest curvature on an L-curve plot, described in
Sect. IIT A. This corresponds to a compromise between
the dependence of the fit coefficients on prior widths ver-
sus on the data itself.

Using an L-curve heuristic for choosing prior widths
in Sect. IIIC revealed a degeneracy between the data
normalization and form factor shape. The floating nor-
malizations that were applied to overcome the unknown
absolute normalization of the neutrino event rates also
prevent pinning down the shape of the form factor in
the absence of a strong prior. For deuterium fits, the
L-curve heuristic in Fig. 2 indicates that a milder prior
constraint is preferred by the fits, which exposes the de-
generacy that manifests as a strong dependence on the

2., cutoff. This degeneracy was not observed in the
analysis of Ref. [8] because of the regularization of the
z expansion parameters with A\ = 1. This work finds
such a strong regularization to be too constraining. The
resulting curve is overfit and likely underestimating the
uncertainty, much like how the dipole parameterization
with only the axial mass as a free parameter historically
led to underestimated uncertainties.

Relaxing the regularization term by decreasing A — 0
allows for a large range of variation of the form factor.
The effects of the aforementioned degeneracy is partially
overcome in this work by introducing the BEBC dataset
to the fits, which does have an absolute normalization up
to a flux uncertainty and can pin the fits down to within
about 20 of the BEBC central value depending on the

2. cut. However, the lack of absolute normalization
still leads to substantial systematic uncertainty on the
form factor shape. This is not accounted for explicitly in
the fits but is schematically represented by an uncertainty
envelope in Fig. 10.

If a there were a sufficiently well-motivated systematic
that could account for the range of variation exhibited
by the deuterium results, inclusion of this would signif-
icantly reduce the constraining power of the deuterium
data relative to the hydrogen and LQCD. If this were
realized, it seems plausible that the deuterium results
would be compatible with the MINERvA and LQCD fits.

The compatibility of neutrino scattering datasets was
tested with 1 degree of freedom Ax? comparisons out-
lined in Sect. IIT B. Testing compatibility of the neutrino
scattering datasets in Sect. III C shows that the datasets
with deuterium targets, including the BEBC result, are
consistent with each other but not with the MINERvA
hydrogen result. The combined fits including both hydro-
gen and deuterium are dominated by the deuterium fit
results. The minimum preferred by the MINERvVA exper-
iment disagrees with the joint-fit minimum (and there-
fore the deuterium minimum) enough to increase the §x?



and fail a compatibility test. Although the compatibil-
ity is almost permissible for the Q2. = 0.06 GeV? com-
bined fit, that apparent compatibility is a consequence of
the poorly-described fit data at low Q2 that coinciden-
tally push the combined fit result closer to the preferred

MINERvVA hydrogen minimum.

The key difference between the single-nucleon results,
including MINERvA hydrogen and LQCD, versus the
deuterium results is the falloff behavior of the form fac-
tor with respect to Q2. The single-nucleon results fall
with Q2 slower than the deuterium results. This was
consistently realized in the LQCD results, which first
started reporting slow Q? falloff as early as 2020 [33-37].
Later corroborating evidence has come not only from the

MINERvVA [15, 47] results explored here, but also Monte
Carlo tunes [9, 10] and work from Schwinger functional
methods [60, 61].

Given the model assumptions inherent in using a deu-
terium target, the known efficiency issues at low Q2, and
the lack of historical preservation of the data, the shape
tension between the hydrogen and deuterium datasets
calls into question the accuracy of the deuterium data.
This work has made the choice to omit the deuterium
data as a result of these deficiencies. Possible sources
of the tension could be the lack of energy transfer-
dependence in the deuterium correction, or from grow-
ing overlap between the quasielastic and A resonance re-
sponses at moderate momentum transfers [49]. Even if
the deuterium data were still included in the fits, the sys-
tematic uncertainty that must be introduced to account
for the lack of absolute normalization would decrease the
pull of the deuterium data in a combined fit, leaving the
fits to be dominated mostly by the LQCD and MINERvA
results.

If the slower falloff with Q2 is born out by future
constraints, then this will have substantial impacts for
neutrino oscillation analyses. This was demonstrated in
Ref. [11] by substituting a representative LQCD result
into the GENIE Monte Carlo event generator. Neutrino
oscillation experiments would see F,-dependent changes
to the event rates if the axial form factor is modified from
a dipole to the new LQCD average. These observations
warrant due caution when tuning to neutrino scattering
data and advocate for selection of models that are flexible
enough to account for the full range of possible variations.

The parameterizations for all of the fits obtained in
this work are listed in Sect. IV, including the fits to the
MINERvVA dataset, a translation of the results of Ref. [3]
to the parameter set used in this work, a summary of
the LQCD fit results from Ref. [16], and a combined
fit to both MINERvA and LQCD. Under the L-curve
heuristic, the MINERVA fit tolerates unregularized fits
with knax = 6 as an optimal choice. The LQCD re-
sult similarly prefers kp.x = 6 based on fit p values.
The MINERvVA dataset alone achieves a fractional un-
certainty of 7% at Q> = 0.50 GeV?, already indicating
an improvement over the precision assumed in Ref. [3].
With LQCD results included, the precision improves to
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a 2% fractional uncertainty at Q2 = 0.50 GeVZ. At
the level of 1% fractional uncertainty, other systemat-
ics would become relevant before further improvement
could be achieved, such as tensions between vector form
factors in Refs. [28] and [29], or isospin corrections [62].

A. Recommendations for the Axial Form Factor

Based on this work, we recommend replacing the deu-
terium results by the kpa.x = 6 results for either LQCD
or LQCD+MINERvA as the new best form factor pa-
rameterization. Given the observed agreement between
the MINERvA and the LQCD results, both of which are
truly free nucleon constraints on the axial form factor,
it appears likely that the deuterium datasets have some
systematic effect that is not properly accounted for. This
suspicion of the deuterium bubble chamber results, com-
bined with an ill-defined inflation of the uncertainty to
account for both Q2. cuts, would likely result in the
deuterium contributing minimally or contributing misin-
formation in a combined fit with all data sources.

The MINERVA result achieves a reasonable constraint
on the uncertainty, but the constraint from LQCD is sig-
nificantly more precise and joint fits between the two is
dominated by the LQCD.

If one wanted a “theory-free” determination of the ax-
ial form-factor, one could simply use the MINERVA re-
sult. However, given the consistency between the LQCD
and MINERvVA result, there is no clear motivation for
doing so.

Although both LQCD and MINERVA results fit well
to kmax = 7 parameterizations, the improvement to x?2 is
not large enough to overcome the decrease to the degrees
of freedom, resulting in slightly smaller p values. This
suggests that the additional free parameter in the kyax =
7 fits is likely not well-informed by the data and is only
working to inflate the uncertainty.

B. Future Directions

There are several possibilities of future investigation
to refine the present work. New neutrino scattering data
from hydrogen and deuterium targets will without doubt
contribute to strengthen constraints on the shape of the
axial form factor. Studies of modern pion electropro-
duction data, interpreted with the help of appropriately
flexible model parameterizations, could provide more in-
formation about the low momentum transfer region of
the axial form factor and the squared axial radius. Si-
multaneous fits to the axial and vector form factors to-
gether could yield interesting surprises, specifically by
leveraging the purely isovector weak interaction to pin
down slight degeneracies in the vector form factor con-
tributions. LQCD will also have the same benefit, pro-
viding linearly independent constraints on the isospin-
symmetric vector form factors and induced pseudoscalar



form factor in addition to the axial form factor. In the
near future, LQCD could also make headway towards
understanding deficiencies in our understanding of deu-
terium corrections at large energy and momentum trans-
fers by producing explicit matrix element calculations
with two-nucleon systems. The availability of both free
nucleon and deuteron responses would provide valuable
insights about the nature of interactions binding nucleons
together into atomic nuclei.

This work has advanced the field another step toward
a precise axial form factor parameterization from ele-
mentary target sources. Making use of all of available
datasets is essential for maximizing the physics potential
of upcoming neutrino oscillation experiments. With the
high-precision experiments currently running and new
flagship experiments just around the corner, supporting
theory predictions of neutrino scattering cross sections
are of critical importance.
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