Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Scaling the memory wall using mixed-precision - HPG-MxP on an exascale-class machine

Conference ·

Mixed-precision algorithms have been proposed as a way for scientific computing to benefit from some of the gains seen for AI on recent high performance computing (HPC) platforms. A few applications dominated by dense matrix operations have seen substantial speedups by utilizing low precision formats such as FP16. However, a majority of scientific simulation applications are memory bandwidth limited. Beyond preliminary studies, the practical gain from using mixed-precision algorithms on a given high-performance computing (HPC) system is largely unclear. The High Performance GMRES Mixed Precision (HPG-MxP) benchmark has been proposed to measure the useful performance of a HPC system on sparse matrix-based mixed-precision applications. In this work, we present an implementation of the HPG-MxP benchmark for an exascale system and describe our algorithm enhancements. We show for the first time a speedup of 1.6x using a combination of double- and single-precision keeping the same residual level on modern GPU-based supercomputers.

Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21); USDOE
DOE Contract Number:
AC05-00OR22725
OSTI ID:
3005442
Country of Publication:
United States
Language:
English

Similar Records

High-Performance GMRES Mixed-Precision (HPG-MxP) Benchmark
Software · Wed May 24 20:00:00 EDT 2023 · OSTI ID:code-145977

A GPU accelerated mixed-precision Smoothed Particle Hydrodynamics framework with cell-based relative coordinates
Journal Article · Sun Jan 28 23:00:00 EST 2024 · Engineering Analysis with Boundary Elements · OSTI ID:2283916

Climbing the Summit and Pushing the Frontier of Mixed Precision Benchmarks at Extreme Scale
Conference · Tue Nov 01 00:00:00 EDT 2022 · OSTI ID:1997799

Related Subjects