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Abstract

Mixed-precision algorithms have been proposed as a way for scien-
tific computing to benefit from some of the gains seen for artificial
intelligence (AI) on recent high performance computing (HPC) plat-
forms. A few applications dominated by dense matrix operations
have seen substantial speedups by utilizing low precision formats
such as FP16. However, a majority of scientific simulation applica-
tions are memory bandwidth limited. Beyond preliminary studies,
the practical gain from using mixed-precision algorithms on a given
HPC system is largely unclear.

The High Performance GMRES Mixed Precision (HPG-MxP)
benchmark has been proposed to measure the useful performance of
a HPC system on sparse matrix-based mixed-precision applications.
In this work, we present a highly optimized implementation of
the HPG-MxP benchmark for an exascale system and describe our
algorithm enhancements. We show for the first time a speedup
of 1.6X using a combination of double- and single-precision on
modern GPU-based supercomputers.
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1 Introduction

Scientific computing has long relied on techniques from numerical
linear algebra, nonlinear equations, numerical optimization, and
ordinary and partial differential equations (PDEs) to model physical
phenomena, make predictions, and explain them. Even in the age
of artificial intelligence (Al), these continue to remain important
[13].

Meanwhile, driven by the insatiable arithmetic compute through-
put needs of large language models, vendors of high-performance
computing (HPC) hardware are designing chips increasingly geared
towards extremely high performance in dense matrix-matrix mul-
tiplication (GEMM) kernels in low precision formats. Graphics
processing unit (GPU) vendors NVIDIA and AMD have designed
‘tensor cores’ and ‘matrix units’ respectively for a higher rate of
growth in FP16, BF16 and INT8 GEMM throughput compared to
IEEE FP32 and FP64 formats typically favored by scientific com-
puting. Indeed, NVIDIA has championed support for FP8, FP6 and
FP4 formats and claimed hundreds of petaflops on a single chip [1],
unthinkable a few years ago. The energy usage per operation is also
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lower when tested on matrix-matrix multiplication workloads. In
fact, energy savings from mixing the use of lower precision formats
has been shown in the past even for other non-AI workloads [5, 17].

However, since many scientific computing applications rely on
higher precision, typically IEEE FP64, this throughput and efficiency
is difficult to access for scientific computing. Computational scien-
tists are thus starting to look into the use of lower precision formats
in mixed-precision numerical algorithms [20].

Furthermore, many real-world scientific and engineering com-
puting workloads are limited by memory bandwidth rather than
arithmetic throughput [16]. These include a large number of simula-
tion applications that rely on solving PDEs governing fluid mechan-
ics, solid mechanics, heat transfer, electromagnetism, chemically-
reacting flows and plasma physics using methods such as finite
differences, finite volumes, finite elements and lattice Boltzmann.
Such applications do not use tensor cores at all since they do not
rely on GEMM as their main computational motif. The primary
computational motifs in simulation codes tend to be from sparse
linear algebra - sparse matrix vector products (SpMV), sparse tri-
angular solves (SpTRSV), sparse matrix sparse matrix products
(SpGEMM), and dot products (DOT). At a slightly higher level,
multigrid methods play an important role in the scalable solution
of PDEs, and present unique challenges in accelerated distributed
HPC [6]. The US Exascale Computing Project invested in develop-
ing mixed precision numerical algorithms for some of these motifs
[2].

The High Performance GMRES Mixed Precision (HPG-MxP)
benchmark was proposed [31] to measure the performance of a
supercomputer on such memory-bandwidth limited simulation
workloads. In contrast to the existing High Performance Conju-
gate Gradient benchmark [14], it allows the use of mixed precision
internally, while requiring a solution ‘somewhat close’ to that ob-
tained by a fully double-precision solver (to be clarified later). In
our view, the objective of the benchmark is to get a practical upper
limit for the performance of mixed-precision memory-bandwidth
limited workloads while achieving essentially the same usefulness
as double-precision computation. The work of developing and run-
ning at scale an optimized benchmark achieving the maximum
possible performance will serve several purposes:

(1) it will serve as a yardstick to shoot for while optimizing the
performance of scientific simulations applications, especially
ones utilizing implicit solvers that require the solution of
large sparse linear systems,

the learning from this activity will help guide computational
scientists and HPC engineers on the best ways to utilize
mixed-precision methods to accelerate workloads on their
HPC systems, and

it will guide hardware vendors and other library providers
in designing and optimizing their numerical libraries to best
support mixed-precision simulation workloads.

(2

~

®)

Our contributions in this paper are as follows.

(1) We describe a state-of-the-art implementation of the HPG-
MxP benchmark that achieves much higher performance
than the reference implementation on large-scale GPU-based
HPC systems.
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(2) We show that with such an optimized implementation, a
higher speedup than earlier reported is possible from a double-
single mixed-precision solver on current-generation exas-
cale systems. While the benchmark allows for the use of any
precision format in most steps of the solver algorithm, we
focus on the use of single precision as the only low precision
format for this paper.

(3) We report, for the first time, a full-system HPG-MxP run
(9408 nodes) on the world’s first exascale system, Frontier,
at the Oak Ridge National Laboratory, USA, using our opti-
mized codebase.

(4) We report some performance analysis of the benchmark
code, particularly traces showing the achieved compute-
communication overlap, the achieved memory bandwidth
and performance relative to the roofline.

(5) We confirm that validation on a small fixed problem size (on
a single node) is sufficient to accurately penalize our mixed
precision solver. This is achieved by introducing a full-scale
validation that uses all available nodes and the full problem
size.

2 Background

The first major attempt to make system benchmarking better reflect
real scientific workloads came with the introduction of the High
Performance Conjugate Gradient (HPCG) benchmark [14]. Since
HPG-MxP is based on HPCG, we first give an overview of HPCG. It
solves the three-dimensional Poisson equation, a fundamental PDE
from which most PDE theory and solver techniques derive, using
a 27-point finite difference discretization on a uniform Cartesian
mesh of a cube-shaped domain. This results in a matrix with as
many rows as mesh points, and 27 non-zero values per row for
interior points. Boundary points have fewer non-zeros depending
on whether they lie on a face, edge or corner point. The precon-

Algorithm 1 Preconditioned conjugate gradient algorithm for a
symmetric positive-definite linear system Ax = b

Require: Initial guess xg
(preconditioner generation) M « P (A)
Py < X0, 70 «— b—Apy, i — 1.
while i < N do
(preconditioner application) z; < M~ 1r;_;
if i = 1 then
Pz
ai — (ri-1,2i)
else
ai « (ri-1,zi)
Pi = o=
pi— Pipi1+zi
end if
ai — (ri-1,2z:)/(p;, Ap;)
Xi+] < Xitaip;
ri < ri-1— a,—Api
end while

ditioned Conjugate Gradient (CG) method is used as the solver.
This is a Krylov subspace solver that is guaranteed to converge, for
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symmetric positive-definite matrices, in N iterations where N is the
dimension of the matrix. The version used by the benchmark [14]
is shown in algorithm 1. In HPCG, the preconditioner is required to
be one cycle of geometric multigrid. Multigrid is a family of highly
scalable algorithms to solve a PDE-based problem [10], based on
the ideas of error smoothing and coarse grid correction. Multigrid
methods are based on discretizing the problem on a hierarchy of
meshes of coarser resolutions and applying an iterative method at
each mesh, or multigrid level, to ‘smooth’ the errors. A two-grid
cycle is shown in figure 1, which is applied recursively to solve the
coarse-grid problem Ap to generate a multigrid cycle.

In a well-tuned mathematically-sound implementation, for a
stencil-based matrix of size N X N, multigrid converges in O(N)
operations , with a small factor [10] (‘textbook multigrid’). However,
this assumes a fixed coarse grid problem size independent of N on
the coarsest level, with the number of multigrid levels increasing to
scale up to ever larger fine-grid problem sizes. Since HPCG fixes the
number of multigrid levels to 4, this ideal scalability is not expected.

HPCG uses the symmetric Gauss-Seidel iteration as the smoother
in its multigrid preconditioner. If the system matrix A is split into
lower triangular L, upper triangular U and diagonal parts D, the
iteration for Az = r can be written as

(D+L)yy=r-Uz (1)
(D+0)zV =r - Ly, ®)

where y is a temporary intermediate vector. Note that this involves a
lower SpTRSV and SpMV with an upper triangular matrix, followed
by an upper SpTRSV and SpMV with a lower triangular matrix.
In an efficient implementation, the whole symmetric Gauss Seidel
iteration can be done in two kernels.

There are two traditional approaches to finding parallelism in
the otherwise sequential Gauss-Seidel iteration - level scheduling
and multicoloring [19, section 2.7.1]. While a level-scheduled tri-
angular solve preserves the original ordering of the matrix but
only has a limited amount of parallelism, multicoloring methods
use an independent set ordering to find independent sets expose
more parallelism. Typically, this means level-scheduled methods
deliver the same preconditioning effectiveness to the CG solver
though cannot utilize the GPU very effectively, while multicolored
triangular solves may degrade the preconditioner quality some-
what (decreasing CG’s convergence rate) but delivers good GPU
utilization.

To map the problem to a distributed parallel computer, the frame-
work of domain decomposition is used [27]. The spatial domain
under consideration, which is discretized by a mesh or graph, is
partitioned among the processors. Each mesh cell or graph point is
associated with a row of the matrix, and the nonzeros in that row
denote its neighborhood (which may not be the same as the topo-
logical neighborhood in the mesh). Thus, the matrix is distributed
by row - each processor owns a block of rows and all columns of
the matrix.

In HPCG, the processors are factored into a 3D grid, similar to
the mesh itself. Thus a grid of size Nx X Ny X N is uniformly
divided amongst px X py X p, processors. Assuming an isotropic
grid that is a perfect cube both in points and processors, N* points
are mapped to p* processors. Each processor has (%)3 points .
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Let n := N/p. In a typical finite difference or finite volume dis-
cretization, each mesh point or cell directly interacts with O(1)
neighbors, that is, a constant number of neighbors independent of
the problem size. Thus, in a regular Cartesian mesh, each row has a
fixed constant number of nonzeros, except for those corresponding
to global boundary points. Therefore, operations such as SpMV
and Gauss-Seidel iterations compute on all the points in the sub-
domain owned by a processor, and need to communicate with the
processors owning their nearest spatial neighboring subdomains.
For cubic subdomains as in HPCG, one requires O(n?) operations
of computations, and about 6n? volume of communications with
neighboring processors. Seen another way;, if v is the problem size
per processor, local compute scales as O(v) while communication
volume scales as O(vz/ 3). Thus, the communication volume is a
geometric order lower than the local computation volume, and
therefore, network bandwidth is typically not the limiting factor
for HPCG performance. In most cases, HPCG is limited by local
memory bandwidth due to the low constant arithmetic intensity of
the computations.

HPCG is a good measure of a HPC system’s performance on real
workloads that are limited by memory bandwidth. However, many
real-world problems involve nonsymmetric matrices, to which the
CG algorithm is not applicable. In such cases, the Generalized Min-
imum Residual (GMRES) solver is popular. It is also a Krylov Sub-
space solver that, as the name implies, tries to minimize the 2-norm
of the residual of the linear system in each iteration [26]. However,
unlike in the symmetric case, there is no ‘short-term’ recurrence
formula, which means previous iterations’ Krylov basis vectors
need to be stored. This significantly increases the memory require-
ment. Certain variants, such as using CGS2 reorthogonalization
(see section 3), also use some dense BLAS2 routines.

Furthermore, HPCG is required to use double-precision arith-
metic. As stated in the introduction, it is of interest to find mixed-
precision algorithms for PDE-based and other simulation work-
loads, and it is thus of interest to measure HPC systems’ expected
performance on such workloads. Research in mixed-precision meth-
ods for sparse matrices is not new. In 2008, Buttari et al. [11] in-
vestigated mixed-precision CG and GMRES solvers, among other
mixed-precision solvers for sparse problems. More recently, Loe et
al. [21] implemented mixed-precision GMRES using two different
strategies - starting a single-precision solver and then switching to
double after some iterations, and iterative refinement (GMRES-IR),
described in the next section. They used either polynomial precon-
ditioning or block-Jacobi preconditioning, whose characteristics
in terms of preconditioning effectiveness, parallelism and resource
utilization are quite different from the multigrid preconditioner pre-
scribed by HPG-MxP. They test their implementation using sample
sparse matrices from applications on a single NVIDIA V100 GPU.

HPG-MxP, then known as the High Performance GMRES Mul-
tiprecision (HPGMP) benchmark, was first proposed in 2022 [31].
It solves a similar problem as the HPCG benchmark, but as the
name suggests, uses a GMRES solver and allows the use of lower
precisions.

As far as the authors are aware, Anzt et al. [3] were the first
to run HPG-MxP on the Frontier exascale system at Oak Ridge
National Laboratory.



SC ’25, November 16-21, 2025, St Louis, MO, USA

(1)

Pre-smooth: z,

— SZI zp
Grid h

Restrict: dy «— Ifdh
where dj, :== —rp, — Ahz}(ll)

Grid H

Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

_ s V2 (2)
Post-smooth: z) — Sh z,

22) — zél) + 3z,

Interpolate: dzp, «— I?{zH

Correct: z

—
Solve Agzy = dy for zyg

Figure 1: Cycle of the linear two-grid method for the system Az, = ry. zj, is an initial guess or prior approximation of

the solution on the fine grid, S is the smoothing iteration or smoother, If denotes the restriction operator, I Z denotes the

prolongation or interpolation operator, and z;l is the improved solution approximation.

3 The HPG-MxP benchmark

HPG-MxP, introduced as HPGMP by Yamazaki et al. [31] in 2022, is
the first benchmark to target mixed-precision simulation workloads.
Similar to HPCG, it solves a Poisson-like problem on a uniform
mesh. This time, there is an option to make the problem nonsym-
metric, though as Yamazaki et al. observe, for GMRES the symmetric
version is at least as difficult to solve as the nonsymmetric one. The
matrix they construct is weakly diagonally dominant; that is, for
each row i, Zj;t,- laij| < aii.

The original right-preconditioned GMRES algorithm [25, chap-
ter 9] is shown in algorithm 2. It attempts to minimize the 2-norm
of the residual, and generation of orthogonal Krylov basis vectors is
necessary for this. The Arnoldi process used to build the orthogonal
Kyrlov basis may use one of a few different methods, such as clas-
sical Gram-Schmidt and modified Gram-Schmidt. While classical
Gram Schmidt is amenable to more efficient implementation, it is
more prone to round-off errors and resulting loss of orthogonality.

Algorithm 2 is called ‘right-preconditioned’ since the precondi-
tioner applies on the right - it is an algorithm to solve the linear
system AM ™!y = b, whose solution x = M~ ly is the same as that
for Ax = b. The preconditioner is one cycle of geometric multigrid
with a forward Gauss-Seidel smoother. The restriction R is a simple
injection from every alternative fine grid point, while the prolon-
gation operator is its transpose P = RT. If ¢ (i) is the index of the
ith coarse grid point in the fine grid and v is a fine grid vector,

(Ro); =0, (i) (3)

In the HPG-MxP benchmark, mixed-precision is utilized at the
highest level via the idea of iterative refinement applied to GMRES,
GMRES-IR. Since GMRES attempts to generate orthogonal Krylov
basis vectors, loss of orthogonality is detrimental to its convergence
[15]. This is especially a problem with classical Gram-Schmidt or-
thogonalization and the usage of lower precisions. Therefore, the
version of GMRES-IR prescribed by the benchmark uses reorthogo-
nalization steps to better preserve orthogonality.

We show the GMRES-IR CGS2 algorithm 3 used by the bench-
mark, including details of how the least-squares problem (QR fac-
torization) is solved using Given’s rotations. The key aspect to note
here is that many of the operations are allowed to be performed in
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Algorithm 2 Right-preconditioned GMRES algorithm for a non-
singular linear system Ax = b

Require: Initial guess xg
M — P(A) > Preconditioner generation
ro < b — Axo, f = |lroll, g, =ro/P.
for j=1,2,..,mdodo
w— AM™lq j > Preconditioner application and SpMV
fori=1,23..jdo
hij « (w.q;)
W w— hi,jqi
end for
hjv1j < wll2, vjs1 —w/hjs,j

end for
Y — argmin,||fer - Hmyllz
Xm — x0+ M0, y,,
if ||b — Axp,||2 < 7 then
Exit.
else
Restart with x¢ « x,.

end if

low precision, but the residual update in line 7 and solution update
in line 47 are required to be done in double-precision. This makes
it possible for the solution to converge to an accuracy level equiv-
alent to that of a fully double precision solver. Note that the QR
factorization update using Given’s rotations happens on the CPU,
on each process redundantly.

Though they provide the option of using a nonsymmetric matrix
for the benchmark, Yamazaki et al. [31] prefer the same symmetric
weakly diagonal-dominant matrix as in HPCG, since this matrix
actually takes more iterations for GMRES to converge than their
nonsymmetric variant. The matrix has all diagonal entries equal to
26 and all off-diagonal entries equal to -1.

The benchmark consists of three phases:

(1) validation,
(2) mixed-precision benchmark, and
(3) double-precision ‘reference’ benchmark.
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Algorithm 3 Right-preconditioned mixed-precision GMRES-IR for
the linear system Ax = b. Steps in blue are allowed to be performed
in low or mixed precision.

Require: Initial guess xo, restart length m, tolerance .
1 M Ppy(A) > Multigrid preconditioner generation
2 po < |Ibll2
3 t € R™1 ¢ e RMH s ¢ R
4: H € R(m+1)><m
5: Q=419 gl € R
6: while not converged do
7 reb-Ax,p=|r|}
8 if p/po < 7 then

> Projected system matrix
> Krylov basis vectors

9: Converged, break.
10: end if
11 rerjp
12: q, <r
13: to,0 < p.
14: fork=1,2,..,mdodo
15: if p/po < 7 then
16: Converged, break.
17: end if
18: z— M lq; > Multigrid preconditioner
19: qrs <« Az > SpMV to get next basis vector
20: procedure CGS2 ORTHOGONALIZATION(g.,1)
21: h Q[ 11k € R > GEMVT
22: Qie+1 < Gr+1 ~ Qrukth > GEMV
23: Hyjp < h
24: h — Q[Tl:k]qk+1 > reorth. GEMVT
25: Qrr1 < Gier1 — Quk)h > reorth. GEMV
26: Hygg < Higr +h
27: end procedure
25 B lgpsllz
29: Qrs1 < Qi /P > Normalize the new basis vector
30: Hiyrk < P
31: procedure UpDATE QR WITH GIVEN’S ROTATIONS
32: forj=1,2,...k—1do
33: Hj+1,k — —SjHj)k + chj+1,k
34: Hj,k — CjHj,k + SjHj+1,k
35: end for
36: oo JH G H
37: Hip —p
38: Hii1p <0
39: p o |tgsjl.
40: tpeg1 < —1Sj
41: I & 1kCj
42: Sk €= Sjs Ck < Cj
43: end procedure
44: end for > Restart cycle completed
45: t— H 't > Dense TRSM of size m
46: r« Qt
47: Xm — X0+ M r > Mixed-precision update

48: end while
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The benchmark first validates the mixed-precision solver on a
few, fixed number of processors. By default, this is all the GPUs on
one node. The validation consists of first running the double preci-
sion GMRES solver, starting from a zero initial guess, to converge
the residual norm by 9 orders of magnitude. The number of itera-
tions required, ny, is recorded. Next, mixed-precision GMRES-IR is
run to converge to the same tolerance, starting from a zero initial
guess again. The number of iterations required, n;,, is recorded.

This is followed by the benchmark phase, where mixed-precision
GMRES-IR is first run for a fixed number of iterations. The time
taken by each motif is recorded and the number of floating point
operations is counted using a carefully constructed model. Floating
point operations of different precisions are counted equally, and
thus the reported GFLOP/s number is a mixed-precision number,
not the standard double-precision GFLOP/s. The final GFLOP/s
metric is penalized by the ratio of the iteration counts obtained in
the validation phase. That is, the final floating point throughput
Fis given by F = Frawg—i. Thus, to avoid a heavy penalty, mixed-
precision GMRES-IR must not take too many additional iterations
to converge 9 orders of magnitude. It is in this sense that the mixed-
precision solver is required to provide a solution that is ‘somewhat
close’ to that of the double-precision solver. When the ratio :—l_dr is
less than 1, it is multiplied by the final GFLOPS value to penalize
the mixed precision run. However, then the ratio is greater than 1,
no penalty is applied. Thus, in the event that the mixed precision
solver actually takes fewer iterations to converge for any reason,
this is not regarded as an advantage for the mixed precision solver,
and it is regarded as though the mixed precision solver has the
same convergence rate as double precision GMRES.

The GMRES-IR solution process is repeated, starting from a zero
initial guess each time, until the requested running time is filled.
Similar to HPCG, the official running time proposed by Yamazaki
et al. [31] is 1800 seconds. Results from this phase are labelled as
‘mxp’ in the results section.

Finally, a double-precision GMRES solver is run for the same
number of fixed maximum iterations, and similar performance
metrics are collected. We report results from this phase labelled as
the ‘double’ in the results section.

3.1 The reference implementation

The reference implementation used in this work is from the official
HPG-MxP repository ! as of April 2025. As described by Yamazaki et
al. [31], there are many substantial inefficiencies in this version. This
is understandable since their aim was to propose the benchmark,
not provide a fully optimized implementation. However, we aim for
an optimized implementation, for which we document the issues
with the reference implementation first.

(1) The Gauss-Seidel implementation uses SpTRSV from cuS-
parse and rocsparse, which use a level-scheduled implemen-
tation [23] without reordering. This variant is mathemati-
cally equivalent to a sequential lexicographic (ordered spa-
tially by mesh points) Gauss-Seidel, but it does not expose
the most parallelism and does not fully utilize the GPU [28].

!https://github.com/hpg-mxp/hpg-mxp
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Figure 2: An example of independent sets for a 2D 9-point
stencil, the 2D analog of the 3D 27-point stencil used in HPCG
and HPG-MxP

(2) Forward Gauss-Seidel is performed using a separate SpMV
with the U matrix followed by a SpTRSV with the L matrix,
which is wasteful.

(3) Inmultigrid, following the Gauss-Seidel smoother, the smoothed

fine-grid residual is first computed using SpMYV, followed
by restriction of this to the coarse grid. This performed sub-
stantial additional work which is not necessary, since the
restriction is simple injection of values from selected fine-
grid points to the coarse grid.

(4) There is no overlap of communication and computation in
either the SpMV or the Gauss-Seidel operation. Indeed, the
code does not support any asynchronous behaviour.

(5) The sparse matrix format used is compressed sparse row, or
CSR. While this format is a popular choice and reasonably
efficient in general, on GPU architectures it has been shown
that for stencil-based problems like the one here, other for-
mats can work better [8].

(6) All mixed-precision operations are done on the host, neces-
sitating additional host-device copies and utilizing slower
CPU DRAM.

3.2 Optimizations

In response to the issues identified with the reference implementa-
tion, we carry out several algorithmic changes and optimizations.

3.2.1 Multicolor Gauss-Seidel iteration. To start with, we imple-
ment the forward Gauss-Seidel in its ‘relaxation’ version [19], com-
pleting the operation in one sweep over the matrix.

More importantly, we reorder the matrix and vectors symmet-
rically using an independent set ordering in order to expose fine-
grained parallel work in the Gauss-Seidel kernel on GPUs. Each
subdomain is reordered independently, without any communica-
tion. If the n local mesh points can be divided into n. independent
sets such that no two points within a set are directly connected to
each other in the sparsity pattern of the system matrix, a Gauss-
Seidel iteration can be completed in n. operations one after the
other, each working on n/n¢ rows in a fully parallel manner. If
ne = O(1) independent of n, we should be able to achieve good
parallel efficiency on a GPU.

The ordering itself is computed on the GPUs using the Jones-
Plassmann-Luby (JPL) algorithm [18, 22] in the optimization func-
tion of the benchmark. Naumov et al. introduced a GPU implemen-
tation [24]. We use the implementation by Trost et al. [29].
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Figure 3: Two possible layouts of the non-zero coefficients’
array of a matrix

As shown in figure 2, the JPL algorithm as well as a sequential
greedy algorithm [25, section 3.3.3] applied to a 9-point stencil on
a spatially two-dimensional (2D) mesh give 4 independent sets, or
‘colors’. The analogous 27-point stencil in 3D requires 8 colors. This
enables the use of multicolored Gauss-Seidel, which involves fully
parallel operations on the rows within each color. The convergence
rate sometimes suffers compared to lexicographic Gauss-Seidel and
other types of reorderings such as Reverse Cuthill McKee (RCM)
[9, 19]. However, this is less of an issue within a multigrid precon-
ditioner setting.

3.2.2  ELLPACK matrix format. We use the ELLPACK matrix format
[8], sometimes simply referred to as ELL. This format is able to fully
utilize GPU warps, especially the 64-wide warps of AMD GPUs,
when there are only a few non-zeros per row. Fully utilizing the
warps is more difficult using the CSR format [19, section 2.9], which
is used in the reference implementation of HPG-MxP by Yamazaki
etal. [31]. The memory layouts used by the two formats are depicted
in figure 3. While the ELL format may have some overhead in its
values and column-indices array due to padding in rows having
less than the maximum number of nonzeros, it does not require a
row pointer array.

3.2.3 Compute-communication overlap. Similar to rocHPCG [29],
we implement SpMV and Gauss-Seidel operations that update the
interior points while neighborhood halo communication operations
take place asynchronously. Pre-conditions for each operation are en-
sured using two GPU streams (‘compute’ stream and ‘halo’ stream)
and one event per MPI rank. The non-blocking kernels that com-
pute the matrix-vector product for the both the interior+boundary
and halo regions are enqueued on the ‘compute’ stream, while the
non-blocking buffer packing kernel and asynchronous host-device
copies (if used) are enqueued on the ‘halo’ stream.

The event is the object that achieves precise synchronization
between the two streams during the Gauss-Seidel operation. This
operation has a significant difference from the SpMV operation
- unlike in SpMV, Gauss-Seidel (equation (1)) requires the output
vector y to be communicated, not the input vector. The event is
used to ensure that the interior computation kernel begins only
after boundary entries of the initial vector y have been copied into
the send buffer, since the interior kernel updates boundary entries
in addition to fully interior locations.
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3.24 Fused SpMV-restriction. The original implementation of Ya-
mazaki et al. [31] explicitly stores the restriction matrix R. Repre-
senting the fine grid index set as F and the coarse grid by C, the
coarse grid residual is computed as

ey Ag;xjf, VieF )
JEN;

re e Z Rij(bj —vj) VieC. ®)
JEN;

where b is the right-hand side vector and x/ is the pre-smoothed
solution vector on the fine grid. Since the restriction is a simple
injection as shown in equation (3), we can fuse the residual calcula-
tion and restriction operations. Thus, in our implementation, we
compute the smoothed residual only at the coarse grid points, rather
than separately compute it at all fine grid points and then restrict
to the coarse grid. Using the coarse-to-fine grid index mapping fc,

Hebrin- ),
JeN(fe(D))
Note that we do not store the restriction operator explicitly. We

updated the accounting of the number of floating point operations
in the multigrid preconditioner to include this optimization.

f .
Afc(l.)jxjf Viec. )

3.25 Software engineering. Given that the reference implementa-
tion is cross-platform and runs on both AMD and NVIDIA GPUs,
we preserved this aspect and made sure that our implementation
works with high performance on both vendors’ devices. Taking
inspiration from numerical libraries like Ginkgo [4], we introduce
a device context DeviceCtx that abstracts many vendor-specific
details, including device memory allocation and deallocation, GPU
stream and event operations, initialization and destruction of BLAS
and sparse BLAS library handles etc. We use C++ features like
function overloading and templates to generate high-performance
kernels for both CUDA and AMD devices. For example, in sparse
matrix-vector product, values loaded from the input vector are
constant and may be used more than once, and it makes sense to
cache them in L1 cache. However, the matrix nonzeros are read
only once, it make sense to skip temporal caching for these values
and improve performance slightly. The intrinsic (backend-specific,
non-standard) functions for these types of loads and stores are dif-
ferent for the two platforms and we take this into account using
C++ features.

Note that all of the improvements detailed so far apply to both
the mixed-precision and purely double-precision solvers.

Additionally, we implement simple custom mixed-precision GPU
kernels for operations such as WAXPBY as required by the mixed-
precision GMRES-IR implementation. This allows us to remove the
host-device copies performed by the reference implementation to
perform these operations on the CPU.

3.3 Alternative full-scale validation

Yamazaki et al. argue [31] that validating the mixed-precision
GMRES-IR on a small number of processes (typically 1 node) and
corresponding small problem size is sufficient. The reason given is
that the benchmark’s purpose is to measure the computer’s ability
to perform operations representative of typical HPC applications
while allowing the use of different precision formats, not to provide
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a truly scalable solver. However, as they themselves note, when the
multigrid preconditioner is used, the loss of convergence rate when
using mixed precision GMRES-IR can be worse at larger scales. In
order to investigate the impact of validation at a 1-node scale on the
penalty factor, we introduce a new validation mode in our version
of the benchmark code.

In the new validation mode, all the processes available to the
run and used for the benchmarking phase, are also used for the
validation phase. The global problem size used for the two phases
is also the same. Two modes are provided:

(1) standard: Double-precision GMRES is run on a small sub-
set of processes, 1 node, until a relative residual norm of
10~ is reached. Since the problem size is correspondingly
small, this always happens within the iteration limit of 10,000.
Mixed-precision GMRES-IR is then also converged 9 orders
of magnitude and the number of iterations n;, is recorded.
fullscale: Double precision GMRES is run for a maximum
of ngz (10,000) iterations or a relative residual norm of 1079,
whichever comes first. The achieved relative residual norm
7 is recorded. Mixed precision GMRES-IR is then run and
converged until the same relative residual norm 7 is achieved,
and the number of iterations n;; is recorded.

—
)
~

As Yamazaki et al. [31] noted, GMRES takes more and more itera-
tions to converge to a fixed tolerance as the problem scale increases.
Thus, with our new validation path, at low scales, the GMRES solver
hits the 107 tolerance much before it reaches 10,000 iterations. The
mixed precision GMRES-IR is then required to converge to 10°.
However, at large scales, the global problem size is much larger and
GMRES hits 10,000 iterations first. Eg., at 1024 nodes in our runs,
the solver achieves a relative residual of about 1.15x 10~°. This was
chosen in order to cap the amount of time the whole benchmark
takes at very large scales, while still learning something about any
loss of convergence caused by the use of mixed precision.

4 Results

We ran the optimized code on the Frontier system at Oak Ridge
National Laboratory using AMD ROCm 6.2.4, Cray MPICH 8.1.31
and GCC 14.2. Each node consists of a 64-core AMD Milan CPU and
4 AMD MI250x GPUs, each divided into two Graphics Compute Dies
(GCDs). Each GCD is effectively treated as a separate GPU. Thus, we
consider there to be 8 GPUs per node. Each GCD is equipped with
64 GB of High Bandwidth Memory (HBM) with a vendor-claimed
peak bandwidth of 1.6 TB/s. This HBM is generally referred to as the
‘global’ memory of the GPU device, as opposed to its much smaller
but faster L2 and L1 caches. The CPU portions of the code (problem
generation etc.) utilize OpenMP parallelism as in the reference code.

Table 1 summarizes the parameters we used to run the bench-
mark. We use a restart length of 30, similar to Yamazaki et al. [31].
This is also the default restart length in the popular PETSc package
[7].

Anzt et al. [3] ran the reference version of the code on Fron-
tier from 1 to 8192 nodes, using the reference implementation of
Yamazaki et al. Due to the inefficiencies in this implementation
detailed earlier, we do not expect it to give the best performance.
However, as of writing, it is the state of the art in HPG-MxP perfor-
mance on Frontier, so we include it in our results. Please note that
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Parameter Value
Restart length 30
Local mesh size 3203
Specified running time (< 1024 nodes) 1800 s
Specified running time (>= 1024 nodes) 900 s
Max. GMRES iterations per solve 300
No. GCDs used for validation 8
Relative convergence tolerance for validation | 1e-9

Table 1: HPG-MxP parameters used

in the graphs that follow, the points corresponding to the results by
Anzt et al. [3], labelled “xsdk", are somewhat approximate as they
have been read off a graph (figure 4 under the chapter ‘Advances
in mixed precision algorithms’).

During validation on 1 node (8 GCDs), the reference double-
precision GMRES solver takes 2305 iterations to converge 9 orders
of magnitude, while the mixed-precision GMRES-IR requires 2382
iterations to converge to the same tolerance. This small increase in
the required number of iterations is expected, and the appropriate
penalty is applied to the mixed-precision performance metric.

4.1 Scaling, speedup and full-system
performance

We first discuss the scaling results of the benchmarking phase. Fig-
ure 4 shows how the overall performance per GCD scales as we
increase the problem size and the number of GCDs in proportion,
for both our implementation (‘present’) and the reference imple-
mentation (“xsdk’). This is similar to weak scaling, though we do
not regard this as true weak scaling because the solver does not con-
verge to a specified residual tolerance, but rather executes a fixed
number of iterations. We see that the performance holds up well
up to large scales. However, as we approach the full system scale,
the scaling efficiency decreases due to the many inner products
required by the GMRES algorithm. Each inner product requires a
global all-reduce operation. Even though the CGS2 version batches
the inner product into a transposed GEMV operation and thus re-
duces the effective latency, we still see some degradation of the
overall scaling. Depending on the mapping of subdomains to MPI
ranks, the coarse multigrid levels may also contribute to some of
this decrease in efficiency (see the discussion on tracing below and
figure 9). Since the reference implementation achieves much lower
performance in general, it does not see this effect. The weak scaling
efficiency of our implementation from 1 node to 9408 nodes is 78%.

At the full system scale of 9408 nodes or 75,264 GPUs, we achieve
an overall mixed-precision performance of 17.23 petaflops. For
perspective, when we ran HPCG ourselves on Frontier on 9408
nodes, we achieved 10.4 petaflops. We note that these numbers are
not directly comparable since the solvers are different in the two
benchmarks.

Figure 5 shows the (penalized) speedup obtained by mixed single-
double precision GMRES-IR versus double precision GMRES. We
see a remarkable overall speedup of about 1.6, against a theoretical
peak of 2x for going fully to single precision assuming the code is
limited by memory bandwidth. This is much improved compared
to the speedups obtained using the reference implementation. In-
terestingly, about 1.6X was also the speedup reported by Buttari et
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Figure 4: ‘Weak’ scaling of the overall benchmark on Frontier.
Itis based on the penalized time taken by the mixed-precision
solver to complete the specified number of iterations.

al. [11] for mixed double-single precision GMRES on a single Intel
Woodcrest CPU from the year 2006.

Clearly, the perfect speedup of the orthogonalization phase plays
a role in this. Since this operation is a dense BLAS-2 operation, it
makes the best use of increased memory throughput of lower preci-
sion numbers. At very large scales, however, the orthogonalization
spends more time in MPI all-reduce operations, thus reducing the
speedup somewhat. Multigrid (primarily Gauss-Seidel, as we shall
see) and SpMV drag the speedup down somewhat owing to their
the need to fetch index arrays, leading to lower arithmetic intensity
and lower advantage from decreasing the bit-width of the floating
point numbers. We note that optimizing the motifs in multigrid
and SpMV as detailed in subsection 3.2 significantly improves the
attained speedup.

Because of our cross-platform implementation discussed in sec-
tion 3.2.5, we are able to seamlessly build and run on systems with
NVIDIA GPUs. In passing, we observed (figure 6) similar speedups
on a small commodity cluster containing NVIDIA K80 GPUs. The
absence of tensor cores on these legacy GPUs is unlikely to af-
fect the results, since the benchmark does not include any dense
matrix-matrix operations on the GPU.

4.2 Validation methodologies

We compare the validation method of Yamazaki et al. [31] to the
new validation method described in section 3.3. Recall that the
validation phase computes the ratio of iteration counts r':—_d to pe-
nalize the performance of mixed-precision GMRES-IR to include
the effects of any slowdown in convergence rate. The ratios com-
puted by standard validation of Yamazaki et al. and the fullscale
validation are shown in table 2. As explained in section 3, if the
ratio is less than 1, it is considered a penalty for the mixed preci-
sion GFLOPS number. It turns out that the standard small-scale
validation method is more or less as stringent as fullscale with
10,000 iterations. It is clear from the full-scale residual norms that,
up through 8 nodes, the validation double precision solve hits the
residual reduction criterion of 1e-9. However, once we get to a scale
of 64 nodes, it hits the iteration limit of 10,000 iterations first, and
does not reach 1e-9 residual reduction.
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Nodes | Std ratio | Full-scale ratio | Full-scale rel-
ative residual
norm

2 0.968 0.966 9.98e-10
8 0.968 1.008 9.99%¢-10
64 0.968 1.050 1.65e-6
128 0.968 1.023 2.82e-6
1024 0.968 1.067 1.154e-5
4096 0.968 0.958 1.148e-5

Table 2: Iteration ratios Z—i for the two validation methods
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Figure 7: Breakdown of time spent in the multigrid smoother
(GS), CGS2 orthogonalization (Ortho), sparse matrix vector
product (SpMV) and multigrid restriction (Restr) on Frontier

4.3 Performance analysis

We take a look at the breakdown of the time spent in the different
motifs in the benchmark at two different scales in Figure 7. The
bar chart shows the four main motifs that take nearly all the time
during the mixed-precision run and the reference double-precision
run of the benchmark. As expected, the mixed-precision variant
spends less time in orthogonalization, since this operation gets
the most benefit from switching to single precision. Going from
1 node to 9408 nodes, the full system scale, we notice that the
orthogonalization takes a greater share of time, likely because the
all-reduce operations in the inner product operations require more
time to synchronize.
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Figure 8: Roofline of the benchmark on a single GCD of an
AMD MI250x. The ten most expensive kernels are depicted,
eight of which are labeled. The unlabelled kernels are the
double and single precision Fused SpMV-restriction, which
perform similar to the Gauss-Seidel sweeps.
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Figure 8 is a roofline of the most expensive kernels in the bench-
mark (both the optimized and reference version) on a single GCD,
obtained from AMD’s rocprofiler-compute. We see that the GFLOP/s
obtained for the kernels lines up at the HBM bandwidth limit.
That is, despite some utilization of L2 and L1 caches, the mea-
sured throughput is at the same level as the HBM limit. Thus, the
kernels are memory bandwidth-limited, as expected.

The compute-communication overlap achieved by our imple-
mentation can be seen on the rocprof traces of a ‘middle’ rank
that communicates with the maximum number of neighbors during
an 8-node benchmark run on Frontier in figure 9. On the fine grid
(figure 9a), we can see that host-device copy after halo buffer pack-
ing, as well as the actual communications, are completely hidden by
the interior Gauss-Seidel kernel on the first independent set color.
However, on the coarsest level (figure 9b), only the first indepen-
dent set is not sufficient to completely overlap the communication.
This is because the communication surface is larger here as a ratio
of the computation volume, compared to the fine grid. Overlapping
more of the Gauss-Seidel kernel with communication is possible
and will be addressed in future work. For other operations like
SpMV, the halo communications are effectively hidden by interior
computations on all multigrid levels.

5 Conclusion

Our results show that simulation workloads should seriously con-
sider mixed-precision algorithms. The substantial 1.6x speedup can
be obtained by carefully carrying out many of the operations in
GMRES in single precision. The fact that we obtain this speedup
on well-optimized code on a wide range of scales and on more
than one architecture indicates that this is a realizable speedup for
production scientific applications, not an artefact of some ineffi-
ciency or a particular run configuration. Further, if one uses half
precision strategically for parts of operations in the blue region in
algorithm 3, one can expect an even higher speedup. This will be
addressed in future work. We do accept, however, that similar to
other large-scale numerical benchmarks, the matrix is artificial and
the actual speedup in applications will depend on the condition
numbers and pseudo-spectra of the matrices. We introduced an
option to run full-scale validation in our code and showed that the
original benchmark’s validation method sufficiently captures any
loss of convergence rate.

Critics may argue that HPG-MxP is redundant, since HPCG
already exists and both are limited by memory bandwidth. However,
we argue that HPG-MxP opens up a much bigger design space by
introducing mixed-precision, nonsymmetric problems and GMRES
(which has different memory utilization characteristics). Being a
standardized benchmark, it allows a greater variety of scientists
and engineers to engage with the issue it seeks to address, and can
spur innovation in achieving greater performance for PDE-based
simulation workloads.

In addition, we note that the mixed-precision GMRES-IR solver
requires a lower-precision copy of the system matrix. This means its
overall memory utilization is more than double-precision GMRES.
In order to compensate for this, we should utilize a larger mesh size
while running double-precision GMRES and it can perhaps achieve
a somewhat higher throughput. The benchmark could be modified

290

Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

to take this into account. In some applications, however, this may
not be relevant since the matrix-free variant of GMRES [12] or
nonlinear GMRES [30] may be used. Only the low-precision matrix
needs to be stored, instead of some approximate double-precision
matrix, for preconditioning.

In closing, we also point out how helpful AMD’s rocHPCG im-
plementation [29] has been in achieving this demonstration of
HPG-MxP performance. The fact that AMD open-sourced their
implementation has accelerated further progress. In the same spirit,
our code is also available open source and we provide details on
building and running it in the reproducibility appendix.
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Figure 9: Traces of our GMRES-IR implementation in an 8-node benchmark run on Frontier. In each trace, there are 4 sections
from top to bottom: ‘CPU HIP API’, ‘Markers and Ranges’, ‘GPU’ and ‘COPY’. Purple bars in the ‘GPU’ section represent the
interior Gauss-Seidel kernel. The consecutive orange, blue and gray-blue bars in the ‘Markers and Ranges’ section represent
halo buffer and communications operations. In the ‘COPY’ section, the green bar represents the device-to-host copy of the send
buffer, while the red bar after it is the host-to-device copy of the received data.
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Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

This document describes the artifacts used to obtain the results of
the article “Scaling the memory wall using mixed-precision - HPG-
MxP on an exascale machine". The article describes a new state-
of-the-art implementation of High Performance GMRES Mixed
Precision (HPG-MxP) benchmark that achieves much higher perfor-
mance than the reference implementation, performance analysis,
speedup from the use of mixed precision, and performance on the
full Frontier supercomputer, the first exascale machine.

Please note that there have been some bugfixes and minor im-
provements made to the source code since submitting the original
manuscript, and these change the performance numbers slightly.
At some scales, the performance numbers obtained by reproduction
attempts may be slightly better than documented in the manu-
script. However, the magnitudes of the changes are small and do
not meaningfully affect the conclusions.

A Overview of Contributions and Artifacts

A.1 Paper’s Main Contributions

We provide a list of the main contributions of the paper below.

C1 We describe a state-of-the-art implementation of the HPG-
MxP benchmark that achieves much higher performance
than the reference implementation on large-scale GPU-based
HPC systems.

C2 We show that with such an optimized implementation,
a higher speedup than earlier reported is possible from a
double-single mixed-precision solver on current-generation
exascale systems.

C3 We report, for the first time, a full-system HPG-MxP run
(9408 nodes) on the world’s first exascale system, Frontier,
at the Oak Ridge National Laboratory, USA, using our opti-
mized codebase.

C4 We report some performance analysis of the benchmark
code, particularly traces showing the achieved compute-
communication overlap, the achieved memory bandwidth
and performance relative to the roofline.

Cs5 We confirm that the standard validation that uses a small
fixed problem size (on a single node) is sufficient to accu-
rately penalize our mixed precision solver. This is achieved
by introducing a full-scale validation that uses all available
nodes and the full problem size.

A.2 Computational Artifacts

The artifact we provide is as follows.

Aj Apermanent record of our HPG-MxP implementation along
with plotting scripts is provided at https://doi.org/10.5281/
zenodo.16943828, while code development is currently lo-
cated at https://github.com/at-aaims/HPG-MxP.
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Artifact ID  Contributions Related

Supported Paper Elements
A1 C Figure 4
Co Figure 5
Figure 6
Cs Figure 4
Sec. 4.1, line 751
Figure 7
Cy Figure 7
Figure 8
Figure 9
Cs Table 2

B Artifact Identification

We provide below details of how the artefact relates to the con-
tributions, the expected reproduction time, setup of the computer
system, execution of the code and analysis of the results. The in-
structions that follow enable the reader to set up the environment,
build the code and run it on a high performance computing (HPC)
system. Further, the steps to postprocess the data generated by the
runs are outlined.

B.1 Computational Artifact A,

Relation To Contributions

The artefact is the software repository developed for demonstrat-
ing optimized performance on the Frontier exascale system. It is
the primary vehicle by which we obtain our findings and directly
leads to all the results obtained, including absolute performance
in GFLOP/s at different scales, speedups of the mixed-precision
GMRES-IR over double-precision GMRES at different scales, time
break-downs showing the proportion of time spent by the most
important kernels, and traces showing the overlap of computation
and communication.

Expected Results

The code should run and generate a
HPGMP-Benchmark_0.1_<date>_<time>. txt file. This file contains
the relevant performance data. On Frontier, the performance should
be roughly 2000 GFLOP/s per node at large scales, dropping to 1838
GFLOP/s per node at full system scale.

Expected Reproduction Time (in Minutes)

The time required for an individual valid run, when the runtime
specified is 1800s, is about 42 minutes on Frontier, at least up to
256 nodes or so. Half-time runs with runtime 900s, for node counts
starting at 1024 nodes in our results, take about 32 minutes to
complete. The difference is due to the problem set up tasks that are
common to all variants of the code involved and are not officially
timed.


https://doi.org/10.5281/zenodo.16943828
https://doi.org/10.5281/zenodo.16943828
https://github.com/at-aaims/HPG-MxP
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Frontier Andes (GPU)
Max nodes 9408 9
GPU AMD MI250x NVIDIA K80
GPUs per node | 8 2
GPU memory | 1600 GB/s 480 GB/s
bandwidth
GPU memory | 64 GB 24 GB
capacity
Network HPE Cray Slingshot | Mellanox S8500 Series
11 200 Gb/s HDR Infiniband 200
Gb/s
CPU AMD 7763, 64 cores | 2x Intel Xeon E5-2695,
28 cores

Table 3: Hardware characteristics of target systems (note that
on Frontier, ‘GPU’ means a single Graphics Compute Die
(GCD))

Frontier Andes
C++ compiler | GCC 14.2.0 GCC9.3.0
GPU toolchain | ROCm 6.2.4 CUDA 11.2.2
MPI Cray MPICH 8.1.31, lib- | OpenMPI 4.0.4
fabric 1.22.0

Table 4: Software used for building and running the code

Artifact Setup (incl. Inputs)

Hardware. The results reported in the article were mostly obtained
on the Frontier exascale system, though those corresponding to fig-
ure 6 were obtained on Andes. The characteristics of these systems
are documented in table 3.

Software. In general, building HPG-MxP requires

e amodern C++ compiler that supports the C++ 17 standard,

e a GPU toolkit, either CUDA or ROCm (CUDA 11.2, ROCm
6.2 and ROCm 6.4 have been tested so far),

e an MPI library, and

o CMake.

Table 4 shows the toolchains and libraries used for building the
code on the respective systems. Note that ROCm and CUDA in-
clude drivers, compilers (hipcc or nvcc) and the ecosystem libraries
rocPRIM, rocRAND rocBLAS, and rocSPARSE, or CUB, cuRAND,
cuBLAS and cuSPARSE.

Datasets / Inputs. The matrix and vectors needed are generated
within the code; there is no external data dependency. Apart from
that, the code requires a few command line flags, denoting the local
grid sizes and the requested runtime of the benchmarking phase:
Eg., -nx=320 -ny=320 -nz=320 —-rt=1800 on Frontier.

Installation and Deployment. Installation consists of loading the
required modules described above, running CMake to configure
the build, and then building using the underlying build tool such
as GNU Make. It is generally build out-of-tree and into a separate
installation directory.
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Profiling and tracing require some additional build flags to enable
NVTX or rocTX annotations. The benchmark is also truncated to
the most relevant parts for analysis.

Artifact Execution

After cloning or downloading the source code and building, exe-
cution primarily involves running the xhpgmp executable with the
appropriate MPI and GPU-binding flags, with arguments to specify
the local problem size, runtime and optionally the validation mode.
To fully reproduce all results in the paper, the code needs to be run
at different node counts. On Frontier, we ran the code at 1, 2 8, 64,
128, 512, 1024, 4096 and 9408 nodes. On Andes, we ran the code on
1, 2 and 8 nodes.

Artifact Analysis (incl. Outputs)

Running the xhpgmp executable will produce

HPGMP-Benchmark_0.1_<date>_<time>. txt files. These contain
all the performance data needed to generate Figures 4-7 in the
paper (supporting contributions C1-C3) after post-processing. We
provide the Python plotting scripts in the repository, in the tools
directory. For each of the scripts, calling the script as python3
script_name.py —help outputs the purpose of the script and the
arguments expected. We provide more detailed instructions on
using these scripts in the artifact evaluation.

We used the ROCm Compute Profiler 2 tool for roofline analysis
(Figure 8 in the paper, supporting contribution Cy4). At the time of
writing, a rocprofiler-compute module is available on Frontier.
However, one can build the tool directly from source, which is the
approach we initially took.

We used rocprof to generate traces and visualized these traces
(json file) with Perfetto UI 3. Figure 9 in the paper, supporting
contribution Cy is a snapshot of this trace vizualization.

The iteration counts and attained residual levels during vali-
dation can be read off from either the Slurm output file or the
HPGMP-Benchmark output file. Table 2 (contribution Cs) in the
paper is generated by collecting this data at different node counts
using the full-scale validation.

Artifact Evaluation (AE)

C.1 Computational Artifact A,
Artifact Setup (incl. Inputs)

The following script can build HPG-MxP on Frontier, assuming one
is currently in the root directory of the cloned repository.

module load PrgEnv-gnu/8.6.0 \
libfabric/1.22.0 cray-mpich/8.1.31

module load rocm/6.2.4

module load googletest/1.14.0

module rm cray-libsci darshan-runtime

export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH\
:$LD_LIBRARY_PATH

mkdir build && cd build
CC=gcc CXX=g++ cmake -DHPGMP_ENABLE_HIP=0N \

Zhttps://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-
rocprof-compute html
Shttps://ui.perfetto.dev/


https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://ui.perfetto.dev/
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-DROCM_PATH=$ROCM_PATH \
-DCMAKE_HIP_ARCHITECTURES=gfx90a \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=/path/to/install/hpgmp
-38

install

make
make

Listing 1: Building on Frontier

module load gcc/9.3.0 cuda/11.2.2 openmpi/4.0.4

mkdir build && cd build

CC=gcc CXX=g++ cmake -DHPGMP_ENABLE_CUDA=ON \
-DCMAKE_CUDA_ARCHITECTURES=37 \
-DCMAKE_BUILD_TYPE=Release
-DCMAKE_INSTALL_PREFIX=/path/to/install/hpgmp

make -3j8

make install

Listing 2: Building on Andes

ROCm is detected mainly via the environment variable ROCM_PATH.
Note that when using Cray compiler wrappers, it’s best to point
CC and CXX in CMake to the underlying compilers such as g++ or
clang++. CMake sometimes fails to find MPI otherwise.

To profile the application, we set the following additional flag at
compilation time.

-DHPGMP_ENABLE_PROFILING=0n

Listing 3: Extra compiling flag for profiling
This flag enables NVTx/ROCTx annotations and limits the number
of GMRES calls to one (with restart_length=30 multigrid cycles)
for both the optimized and the reference implementations. This is

sufficient for profiling purposes, while limiting the cost of profiling,
given that there is a warm up run before the benchmark.

Artifact Execution

The listings below detail the steps and flags required to run the
benchmark and obtain the results.

#SBATCH -t 0:45:00

#SBATCH -N 1024

#SBATCH --ntasks-per-node=8
#SBATCH --exclusive

#SBATCH --cpus-per-task=7
#SBATCH --gpus-per-task=1
#SBATCH -A acc123

#SBATCH -J m320_3-n1024
#SBATCH -o %x-%j.slout

module load PrgEnv-gnu/8.6.0 libfabric/1.22.0 \
cray-mpich/8.1.31

module load rocm/6.2.4

module load googletest/1.14.0

module rm cray-libsci darshan-runtime

export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH\
:$LD_LIBRARY_PATH

HPCG_NX=320

HPCG_NY=320

HPCG_NZ=320

RUNTIME=1800

EXEC=/path/to/install/hpgmp/bin/xhpgmp

cd $SLURM_SUBMIT_DIR

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun -n $SLURM_NTASKS -c $SLURM_CPUS_PER_TASK \
--gpus-per-task=1 --gpu-bind=closest \
--exclusive \
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$EXEC --nx=$HPCG_NX
--rt=$RUNTIME

--ny=$HPCG_NY --nz=$HPCG_NZ \

Listing 4: Job submission script on Frontier

#SBATCH -t 0:55:00

#SBATCH -N 8

#SBATCH --ntasks-per-node=2
#SBATCH --exclusive
#SBATCH --cpus-per-task=14
#SBATCH --gpus-per-task=1
#SBATCH -p gpu

#SBATCH --mem=0

#SBATCH -A accl123

#SBATCH -J m256_160_128-n8
#SBATCH -o %x-%j.slout
HPCG_NX=256

HPCG_NY=160

HPCG_NZ=128

RUNTIME=1800
EXEC=/path/to/install/hpgmp/bin/xhpgmp

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun -n $SLURM_NTASKS -c $SLURM_CPUS_PER_TASK \
--gpus-per-task=1 --gpu-bind=closest \
-m block:cyclic --cpu-bind=sockets --exclusive \
$EXEC --nx=$HPCG_NX --ny=$HPCG_NY --nz=$HPCG_NZ \
--rt=$RUNTIME

Listing 5: Job submission script on Andes

The following commands can be used to generate PDF files of
the roofline.

module load rocprofiler-compute/3.0.0
rocprof -compute profile --roof-only \
--kernel-names --name xhpgmp \
-- $EXEC --nx=$HPCG_NX --ny=$HPCG_NY
--rt=$RUNTIME

--nz=$HPCG_NZ \

Listing 6: ROCm Compute Profiler command for roofline
analysis on Frontier

To collect the rocprof traces from multiple processes at once,
we replace the original application executable with a helper script
that includes a call to rocprof as follows.

-n $SLURM_NTASKS -c $SLURM_CPUS_PER_TASK \
--gpus-per-task=1 --gpu-bind=closest \
--exclusive ./helper_rocprof.sh

srun

Listing 7: Scheduler command to collect traces on Frontier

rocprof --stats \
--roctx-trace --sys-trace \
-d ${SLURM_PROCID} \
-0 ${SLURM_PROCID}/results.csv \
$EXEC --nx=$HPCG_NX --ny=$HPCG_NY
--rt=$RUNTIME

--nz=$HPCG_NZ \

Listing 8: rocprof command to collect traces on Frontier (con-
tent of helper_rocprof.sh)

This will generate traces for each process and write the data in the
corresponding $SLURM_PROCID folder.

The default validation mode is the standard validation (single
node) mode of Yamazaki et al. In order to obtain the results using
full-scale validation to reproduce Cs (table 2 in the revised manu-
script), a slightly modified version of the job run script needs to be
used; particularly, the flag -validation_type=fullscale.
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#SBATCH -t 0:45:00

#SBATCH -N 1024

#SBATCH --ntasks-per-node=8
#SBATCH --exclusive

#SBATCH --cpus-per-task=7
#SBATCH --gpus-per-task=1
#SBATCH -A accl123

#SBATCH
#SBATCH

-J fullscale_valid-m320_3-n1024
-0 %x-%j.slout

module load PrgEnv-gnu/8.6.0 libfabric/1.22.0 \
cray-mpich/8.1.31

module load rocm/6.4.1

module load googletest/1.14.0

module rm cray-libsci darshan-runtime

export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH\
:$LD_LIBRARY_PATH

HPCG_NX=320

HPCG_NY=320

HPCG_NZ=320

RUNTIME=450

EXEC=/path/to/install/hpgmp/bin/xhpgmp

cd $SLURM_SUBMIT_DIR

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun -n $SLURM_NTASKS -c¢ $SLURM_CPUS_PER_TASK \
--gpus -per-task=1 --gpu-bind=closest \
--exclusive \
$EXEC --nx=$HPCG_NX --ny=$HPCG_NY --nz=$HPCG_NZ \
--rt=$RUNTIME --validation_type=fullscale

Listing 9: Job submission script on Frontier for full scale

validation

On a given system, it is currently a trial-and-error process to
figure out the maximum possible local problem size. On Frontier, we
use a local mesh size of 3203, while on Andes we use 256 X 160 X 128.
For the multigrid method to work, each dimension must be divisible
by 8.

Artifact Analysis (incl. Outputs)

Running the xhpgmp executable will produce
HPGMP-Benchmark_0.1_<date>_<time>. txt files. We provide the
following Python plotting scripts in the repository, in the tools
directory.

e parse_benchmark_output.py With the HPGMP output file
as the argument, this script parses the file and appends a
row to a CSV file containing the time taken by different
operations (SpMV, MG, etc.) and the GFLOP/s obtained by
them.

e plot_scaling.py With the above generated CSV file as
input, this script generates the weak scaling plot like the
ones in Figure 4.

e plot_speedups.py With the CSV file as input again, this
script generates speedup plots as in Figures 5 and 6 of the
manuscript.

e plot_stacked_breakdown.py When called on the CSV file
generated by the parser script, it generates the stacked bar
charts. In response to reviewer comments, the pie charts in
Figure 7 were replaced by a single stacked bar chart with
different node counts along the x-axis.

The profiling results on Frontier (Figures 8 and 9 in the paper),
supporting contribution C4 can be obtained as follows:

296

Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

e Running ROCm Compute Profiler will generate PDF files for
the roofline. We built ROCm Compute Profiler from source
and modified it to annotate the plot and make it more read-
able. We show the resulting roofline plot in Figure 8.

e Running rocprof with tracing will generate JSON files that
can be visualized with Perfetto UL We show a resulting trace
in Figure 9. This is the trace from process 41 of 64 (8 Frontier
nodes), which is at the center of the computational domain,
and therefore, has the maximum number of neighbors.

We make an additional node about the
HPGMP-Benchmark_0.1_<date>_<time>. txt files.

o The final reported mixed precision performance number is
the field GFLOP/s Summary::Total for benchmark.

e The reported double precision performance number is the
field GFLOP/s Summary:: - Total (reference).

o For our implementation, the file also gives estimates of achieved
memory bandwidth.

e Validation information is found in the ‘Tterations Summary’
section of the file, and also in the standard output (typically
redirected to a Slurm output file).
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Reproducibility Report

D Overview of Reproduction of Artifacts

The following table provides an overview of each computational
artifact’s reproducibility status. Artifact IDs correspond to those in
the AD/AE Appendices.

Artifact ID Available Functional Reproduced
Aq 3 . partially
Badge awarded yes yes no

E Reproduction of Computational Artifacts

E.1 Timeline

The artifact evaluation was conducted from Sept 05, 2025, to Sept
07, 2025

E.2 Computational Environment and Resources

The experiments conducted for artifact evaluation were performed
on

e NERSC Perlmutter

o Alocal server with amd=gfx90a and ROCm 6.2.0

E.3 Details on Artifact Reproduction

o The zip file was successfully downloaded from github.

e On both testbeds, the compilation failed initially

e This was fixed by changing constexpr to const in lines 34,
41, 57 of HPG-MxP-1.0.0/src/perf_counter.hpp
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e On Perlmutter, the execution was successful with provided
python scripts used to generate PNGs of scaling and speedups.
o The script plot_stacked_breakdown.py is not available in
the artifacts while being mentioned in the AD/AE. This is
due to the review process during which the pie charts were
changed to stacked histograms but the changes did not reflect
anywhere else.
o Although the exact plots were not reproduced, similar plots
corresponding to Figuress 4-7 on Perlmutter were obtained.
On the local gfx90a server, segmentation fault was encoun-
tered thus Figures 8-9 were not reproduced. Diligent effort
was made by the reviewer to identify the source of segmen-
tation fault, but that was unfortunately not possible in time.

Disclaimer: This Reproducibility Report was crafted by volunteers with the goal
of enhancing reproducibility in our research domain. The time period allocated for the
reproducibility analysis was constrained by paper notification deadlines and camera-
ready submission dates. Furthermore, the compute hours in the shared infrastructure
(e.g., Chameleon Cloud) available to the authors of this report were limited and re-
stricted the scope and quantity of experiments in the review phase. Consequently, the
inability to reproduce certain artifacts within this evaluation should not be interpreted
as definitive evidence of their irreproducibility. Limitations in the time allocated to
this review and the compute resources available to the reviewers may have prevented

a positive outcome. Furthermore, reviewers assess the reproducibility of the artifacts
provided by the authors; however, they are not accountable for verifying that the

artifacts support the main claims of the paper.
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