
Scaling the memory wall using mixed-precision - HPG-MxP on an
exascale machine

Aditya Kashi

National Center for Computational

Sciences

Oak Ridge National Laboratory

(ORNL)

Oak Ridge, TN, USA

kashia@ornl.gov

Nicholson Koukpaizan

National Center for Computational

Sciences

Oak Ridge National Laboratory

(ORNL)

Oak Ridge, TN, USA

koukpaizannk@ornl.gov

Hao Lu

National Center for Computational

Sciences

Oak Ridge National Laboratory

(ORNL)

Oak Ridge, TN, USA

luh1@ornl.gov

Michael Matheson

National Center for Computational

Sciences

Oak Ridge National Laboratory

(ORNL)

Oak Ridge, USA

mathesonma@ornl.gov

Sarp Oral

National Center for Computational

Sciences

Oak Ridge National Laboratory

(ORNL)

Oak Ridge, TN, USA

oralhs@ornl.gov

Feiyi Wang

National Center for Computational

Sciences

Oak Ridge National Laboratory

(ORNL)

Oak Ridge, TN, USA

fwang2@ornl.gov

Abstract
Mixed-precision algorithms have been proposed as a way for scien-

tific computing to benefit from some of the gains seen for artificial

intelligence (AI) on recent high performance computing (HPC) plat-

forms. A few applications dominated by dense matrix operations

have seen substantial speedups by utilizing low precision formats

such as FP16. However, a majority of scientific simulation applica-

tions are memory bandwidth limited. Beyond preliminary studies,

the practical gain from using mixed-precision algorithms on a given

HPC system is largely unclear.

The High Performance GMRES Mixed Precision (HPG-MxP)

benchmark has been proposed tomeasure the useful performance of

a HPC system on sparse matrix-based mixed-precision applications.

In this work, we present a highly optimized implementation of

the HPG-MxP benchmark for an exascale system and describe our

algorithm enhancements. We show for the first time a speedup

of 1.6× using a combination of double- and single-precision on

modern GPU-based supercomputers.

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-

AC05-00OR22725 with the U.S. Department of Energy (DOE). The U.S. government

retains and the publisher, by accepting the article for publication, acknowledges

that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide

license to publish or reproduce the published form of this manuscript, or allow others

to do so, for U.S. government purposes. DOE will provide public access to these

results of federally sponsored research in accordance with the DOE Public Access Plan

(http://energy.gov/downloads/doe-public-access-plan).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-

tional License.

SC ’25, St Louis, MO, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1466-5/25/11

https://doi.org/10.1145/3712285.3759877

CCS Concepts
•Mathematics of computing→Mathematical software per-
formance; • Applied computing→ Physical sciences and engi-
neering.

Keywords
Mixed precision, sparse linear algebra, iterative linear solver, graph-

ics processing unit, parallel scaling, benchmark

ACM Reference Format:
Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral,

and Feiyi Wang. 2025. Scaling the memory wall using mixed-precision

- HPG-MxP on an exascale machine. In The International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’25),
November 16–21, 2025, St Louis, MO, USA.ACM,NewYork, NY, USA, 17 pages.

https://doi.org/10.1145/3712285.3759877

1 Introduction
Scientific computing has long relied on techniques from numerical

linear algebra, nonlinear equations, numerical optimization, and

ordinary and partial differential equations (PDEs) to model physical

phenomena, make predictions, and explain them. Even in the age

of artificial intelligence (AI), these continue to remain important

[13].

Meanwhile, driven by the insatiable arithmetic compute through-

put needs of large language models, vendors of high-performance

computing (HPC) hardware are designing chips increasingly geared

towards extremely high performance in dense matrix-matrix mul-

tiplication (GEMM) kernels in low precision formats. Graphics

processing unit (GPU) vendors NVIDIA and AMD have designed

‘tensor cores’ and ‘matrix units’ respectively for a higher rate of

growth in FP16, BF16 and INT8 GEMM throughput compared to

IEEE FP32 and FP64 formats typically favored by scientific com-

puting. Indeed, NVIDIA has championed support for FP8, FP6 and

FP4 formats and claimed hundreds of petaflops on a single chip [1],

unthinkable a few years ago. The energy usage per operation is also

281

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-2589-3792
https://orcid.org/0009-0008-5384-9741
https://orcid.org/0000-0001-8941-870X
https://orcid.org/0000-0003-1512-5255
https://orcid.org/0000-0001-8745-7078
https://orcid.org/0000-0002-0099-1559
http://energy.gov/downloads/doe-public-access-plan
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3712285.3759877
https://doi.org/10.1145/3712285.3759877
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712285.3759877&domain=pdf&date_stamp=2025-11-15

SC ’25, November 16–21, 2025, St Louis, MO, USA Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

lower when tested on matrix-matrix multiplication workloads. In

fact, energy savings from mixing the use of lower precision formats

has been shown in the past even for other non-AI workloads [5, 17].

However, since many scientific computing applications rely on

higher precision, typically IEEE FP64, this throughput and efficiency

is difficult to access for scientific computing. Computational scien-

tists are thus starting to look into the use of lower precision formats

in mixed-precision numerical algorithms [20].

Furthermore, many real-world scientific and engineering com-

puting workloads are limited by memory bandwidth rather than

arithmetic throughput [16]. These include a large number of simula-

tion applications that rely on solving PDEs governing fluid mechan-

ics, solid mechanics, heat transfer, electromagnetism, chemically-

reacting flows and plasma physics using methods such as finite

differences, finite volumes, finite elements and lattice Boltzmann.

Such applications do not use tensor cores at all since they do not

rely on GEMM as their main computational motif. The primary

computational motifs in simulation codes tend to be from sparse

linear algebra - sparse matrix vector products (SpMV), sparse tri-

angular solves (SpTRSV), sparse matrix sparse matrix products

(SpGEMM), and dot products (DOT). At a slightly higher level,

multigrid methods play an important role in the scalable solution

of PDEs, and present unique challenges in accelerated distributed

HPC [6]. The US Exascale Computing Project invested in develop-

ing mixed precision numerical algorithms for some of these motifs

[2].

The High Performance GMRES Mixed Precision (HPG-MxP)

benchmark was proposed [31] to measure the performance of a

supercomputer on such memory-bandwidth limited simulation

workloads. In contrast to the existing High Performance Conju-

gate Gradient benchmark [14], it allows the use of mixed precision

internally, while requiring a solution ‘somewhat close’ to that ob-

tained by a fully double-precision solver (to be clarified later). In

our view, the objective of the benchmark is to get a practical upper

limit for the performance of mixed-precision memory-bandwidth

limited workloads while achieving essentially the same usefulness

as double-precision computation. The work of developing and run-

ning at scale an optimized benchmark achieving the maximum

possible performance will serve several purposes:

(1) it will serve as a yardstick to shoot for while optimizing the

performance of scientific simulations applications, especially

ones utilizing implicit solvers that require the solution of

large sparse linear systems,

(2) the learning from this activity will help guide computational

scientists and HPC engineers on the best ways to utilize

mixed-precision methods to accelerate workloads on their

HPC systems, and

(3) it will guide hardware vendors and other library providers

in designing and optimizing their numerical libraries to best

support mixed-precision simulation workloads.

Our contributions in this paper are as follows.

(1) We describe a state-of-the-art implementation of the HPG-

MxP benchmark that achieves much higher performance

than the reference implementation on large-scale GPU-based

HPC systems.

(2) We show that with such an optimized implementation, a

higher speedup than earlier reported is possible from a double-

single mixed-precision solver on current-generation exas-

cale systems. While the benchmark allows for the use of any

precision format in most steps of the solver algorithm, we

focus on the use of single precision as the only low precision

format for this paper.

(3) We report, for the first time, a full-system HPG-MxP run

(9408 nodes) on the world’s first exascale system, Frontier,

at the Oak Ridge National Laboratory, USA, using our opti-

mized codebase.

(4) We report some performance analysis of the benchmark

code, particularly traces showing the achieved compute-

communication overlap, the achieved memory bandwidth

and performance relative to the roofline.

(5) We confirm that validation on a small fixed problem size (on

a single node) is sufficient to accurately penalize our mixed

precision solver. This is achieved by introducing a full-scale

validation that uses all available nodes and the full problem

size.

2 Background
The first major attempt to make system benchmarking better reflect

real scientific workloads came with the introduction of the High

Performance Conjugate Gradient (HPCG) benchmark [14]. Since

HPG-MxP is based on HPCG, we first give an overview of HPCG. It

solves the three-dimensional Poisson equation, a fundamental PDE

from which most PDE theory and solver techniques derive, using

a 27-point finite difference discretization on a uniform Cartesian

mesh of a cube-shaped domain. This results in a matrix with as

many rows as mesh points, and 27 non-zero values per row for

interior points. Boundary points have fewer non-zeros depending

on whether they lie on a face, edge or corner point. The precon-

Algorithm 1 Preconditioned conjugate gradient algorithm for a

symmetric positive-definite linear system 𝑨𝒙 = 𝒃

Require: Initial guess 𝒙0

(preconditioner generation) 𝑴 ← P(𝑨)
𝒑

0
← 𝒙0, 𝒓0 ← 𝒃 −𝑨𝒑

0
, 𝑖 ← 1.

while 𝑖 < 𝑁 do
(preconditioner application) 𝒛𝑖 ← 𝑴−1𝒓𝑖−1

if 𝑖 = 1 then
𝒑𝑖 ← 𝒛𝑖
𝛼𝑖 ← (𝒓𝑖−1, 𝒛𝑖)

else
𝛼𝑖 ← (𝒓𝑖−1, 𝒛𝑖)
𝛽𝑖 ← 𝛼𝑖

𝛼𝑖−1

𝒑𝑖 ← 𝛽𝑖𝒑𝑖−1
+ 𝒛𝑖

end if
𝛼𝑖 ← (𝒓𝑖−1, 𝒛𝑖)/(𝒑𝑖 ,𝑨𝒑𝑖)
𝒙𝑖+1 ← 𝒙𝑖 + 𝛼𝑖𝒑𝑖
𝒓𝑖 ← 𝒓𝑖−1 − 𝛼𝑖𝑨𝒑𝑖

end while

ditioned Conjugate Gradient (CG) method is used as the solver.

This is a Krylov subspace solver that is guaranteed to converge, for

282

Scaling the memory wall using mixed-precision - HPG-MxP on an exascale machine SC ’25, November 16–21, 2025, St Louis, MO, USA

symmetric positive-definite matrices, in 𝑁 iterations where 𝑁 is the

dimension of the matrix. The version used by the benchmark [14]

is shown in algorithm 1. In HPCG, the preconditioner is required to

be one cycle of geometric multigrid. Multigrid is a family of highly

scalable algorithms to solve a PDE-based problem [10], based on

the ideas of error smoothing and coarse grid correction. Multigrid

methods are based on discretizing the problem on a hierarchy of

meshes of coarser resolutions and applying an iterative method at

each mesh, or multigrid level, to ‘smooth’ the errors. A two-grid

cycle is shown in figure 1, which is applied recursively to solve the

coarse-grid problem 𝑨𝐻 to generate a multigrid cycle.

In a well-tuned mathematically-sound implementation, for a

stencil-based matrix of size 𝑁 × 𝑁 , multigrid converges in O(𝑁)
operations , with a small factor [10] (‘textbookmultigrid’). However,

this assumes a fixed coarse grid problem size independent of 𝑁 on

the coarsest level, with the number of multigrid levels increasing to

scale up to ever larger fine-grid problem sizes. Since HPCG fixes the

number of multigrid levels to 4, this ideal scalability is not expected.

HPCG uses the symmetric Gauss-Seidel iteration as the smoother

in its multigrid preconditioner. If the system matrix 𝑨 is split into

lower triangular 𝑳, upper triangular 𝑼 and diagonal parts 𝑫 , the
iteration for 𝑨𝒛 = 𝒓 can be written as

(𝑫 + 𝑳)𝒚 = 𝒓 − 𝑼𝒛, (1)

(𝑫 + 𝑼)𝒛 (1) = 𝒓 − 𝑳𝒚, (2)

where𝒚 is a temporary intermediate vector. Note that this involves a

lower SpTRSV and SpMV with an upper triangular matrix, followed

by an upper SpTRSV and SpMV with a lower triangular matrix.

In an efficient implementation, the whole symmetric Gauss Seidel

iteration can be done in two kernels.

There are two traditional approaches to finding parallelism in

the otherwise sequential Gauss-Seidel iteration - level scheduling

and multicoloring [19, section 2.7.1]. While a level-scheduled tri-

angular solve preserves the original ordering of the matrix but

only has a limited amount of parallelism, multicoloring methods

use an independent set ordering to find independent sets expose

more parallelism. Typically, this means level-scheduled methods

deliver the same preconditioning effectiveness to the CG solver

though cannot utilize the GPU very effectively, while multicolored

triangular solves may degrade the preconditioner quality some-

what (decreasing CG’s convergence rate) but delivers good GPU

utilization.

To map the problem to a distributed parallel computer, the frame-

work of domain decomposition is used [27]. The spatial domain

under consideration, which is discretized by a mesh or graph, is

partitioned among the processors. Each mesh cell or graph point is

associated with a row of the matrix, and the nonzeros in that row

denote its neighborhood (which may not be the same as the topo-

logical neighborhood in the mesh). Thus, the matrix is distributed

by row - each processor owns a block of rows and all columns of

the matrix.

In HPCG, the processors are factored into a 3D grid, similar to

the mesh itself. Thus a grid of size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 is uniformly

divided amongst 𝑝𝑥 × 𝑝𝑦 × 𝑝𝑧 processors. Assuming an isotropic

grid that is a perfect cube both in points and processors, 𝑁 3
points

are mapped to 𝑝3
processors. Each processor has (𝑁𝑝)

3
points .

Let 𝑛 := 𝑁 /𝑝 . In a typical finite difference or finite volume dis-

cretization, each mesh point or cell directly interacts with O(1)
neighbors, that is, a constant number of neighbors independent of

the problem size. Thus, in a regular Cartesian mesh, each row has a

fixed constant number of nonzeros, except for those corresponding

to global boundary points. Therefore, operations such as SpMV

and Gauss-Seidel iterations compute on all the points in the sub-

domain owned by a processor, and need to communicate with the

processors owning their nearest spatial neighboring subdomains.

For cubic subdomains as in HPCG, one requires O(𝑛3) operations
of computations, and about 6𝑛2

volume of communications with

neighboring processors. Seen another way, if 𝜈 is the problem size

per processor, local compute scales as O(𝜈) while communication

volume scales as O(𝜈2/3). Thus, the communication volume is a

geometric order lower than the local computation volume, and

therefore, network bandwidth is typically not the limiting factor

for HPCG performance. In most cases, HPCG is limited by local

memory bandwidth due to the low constant arithmetic intensity of

the computations.

HPCG is a good measure of a HPC system’s performance on real

workloads that are limited by memory bandwidth. However, many

real-world problems involve nonsymmetric matrices, to which the

CG algorithm is not applicable. In such cases, the Generalized Min-

imum Residual (GMRES) solver is popular. It is also a Krylov Sub-

space solver that, as the name implies, tries to minimize the 2-norm

of the residual of the linear system in each iteration [26]. However,

unlike in the symmetric case, there is no ‘short-term’ recurrence

formula, which means previous iterations’ Krylov basis vectors

need to be stored. This significantly increases the memory require-

ment. Certain variants, such as using CGS2 reorthogonalization

(see section 3), also use some dense BLAS2 routines.

Furthermore, HPCG is required to use double-precision arith-

metic. As stated in the introduction, it is of interest to find mixed-

precision algorithms for PDE-based and other simulation work-

loads, and it is thus of interest to measure HPC systems’ expected

performance on such workloads. Research in mixed-precision meth-

ods for sparse matrices is not new. In 2008, Buttari et al. [11] in-

vestigated mixed-precision CG and GMRES solvers, among other

mixed-precision solvers for sparse problems. More recently, Loe et

al. [21] implemented mixed-precision GMRES using two different

strategies - starting a single-precision solver and then switching to

double after some iterations, and iterative refinement (GMRES-IR),

described in the next section. They used either polynomial precon-

ditioning or block-Jacobi preconditioning, whose characteristics

in terms of preconditioning effectiveness, parallelism and resource

utilization are quite different from the multigrid preconditioner pre-

scribed by HPG-MxP. They test their implementation using sample

sparse matrices from applications on a single NVIDIA V100 GPU.

HPG-MxP, then known as the High Performance GMRES Mul-

tiprecision (HPGMP) benchmark, was first proposed in 2022 [31].

It solves a similar problem as the HPCG benchmark, but as the

name suggests, uses a GMRES solver and allows the use of lower

precisions.

As far as the authors are aware, Anzt et al. [3] were the first

to run HPG-MxP on the Frontier exascale system at Oak Ridge

National Laboratory.

283

SC ’25, November 16–21, 2025, St Louis, MO, USA Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

Grid ℎ

Grid 𝐻

Pre-smooth: 𝒛 (1)
ℎ
← 𝑺𝜈1

ℎ
𝒛ℎ

Restrict: 𝒅𝐻 ← 𝑰𝐻
ℎ
𝒅ℎ

where 𝒅ℎ := −𝒓ℎ −𝑨ℎ𝒛
(1)
ℎ

Solve 𝑨𝐻 𝒛𝐻 = 𝒅𝐻 for 𝒛𝐻

Interpolate: 𝛿𝒛ℎ ← 𝑰ℎ
𝐻
𝒛𝐻

Correct: 𝒛 (2)
ℎ
← 𝒛 (1)

ℎ
+ 𝛿𝒛ℎ

Post-smooth: 𝒛′
ℎ
← 𝑺𝜈2

ℎ
𝒛 (2)
ℎ

Figure 1: Cycle of the linear two-grid method for the system 𝑨ℎ𝒛ℎ = 𝒓ℎ . 𝒛ℎ is an initial guess or prior approximation of
the solution on the fine grid, 𝑺 is the smoothing iteration or smoother, 𝑰𝐻

ℎ
denotes the restriction operator, 𝑰ℎ

𝐻
denotes the

prolongation or interpolation operator, and 𝒛′
ℎ
is the improved solution approximation.

3 The HPG-MxP benchmark
HPG-MxP, introduced as HPGMP by Yamazaki et al. [31] in 2022, is

the first benchmark to target mixed-precision simulation workloads.

Similar to HPCG, it solves a Poisson-like problem on a uniform

mesh. This time, there is an option to make the problem nonsym-

metric, though as Yamazaki et al. observe, for GMRES the symmetric

version is at least as difficult to solve as the nonsymmetric one. The

matrix they construct is weakly diagonally dominant; that is, for

each row 𝑖 ,
∑

𝑗≠𝑖 |𝑎𝑖 𝑗 | ≤ 𝑎𝑖𝑖 .

The original right-preconditioned GMRES algorithm [25, chap-

ter 9] is shown in algorithm 2. It attempts to minimize the 2-norm

of the residual, and generation of orthogonal Krylov basis vectors is

necessary for this. The Arnoldi process used to build the orthogonal

Kyrlov basis may use one of a few different methods, such as clas-

sical Gram-Schmidt and modified Gram-Schmidt. While classical

Gram Schmidt is amenable to more efficient implementation, it is

more prone to round-off errors and resulting loss of orthogonality.

Algorithm 2 is called ‘right-preconditioned’ since the precondi-

tioner applies on the right - it is an algorithm to solve the linear

system 𝑨𝑴−1𝑦 = 𝒃 , whose solution 𝒙 = 𝑴−1𝒚 is the same as that

for 𝑨𝒙 = 𝒃 . The preconditioner is one cycle of geometric multigrid

with a forward Gauss-Seidel smoother. The restriction 𝑹 is a simple

injection from every alternative fine grid point, while the prolon-

gation operator is its transpose 𝑷 = 𝑹𝑇 . If 𝑐 𝑓 (𝑖) is the index of the
𝑖th coarse grid point in the fine grid and 𝒗 is a fine grid vector,

(𝑹𝒗)𝑖 := 𝑣𝑐 𝑓 (𝑖) . (3)

In the HPG-MxP benchmark, mixed-precision is utilized at the

highest level via the idea of iterative refinement applied to GMRES,

GMRES-IR. Since GMRES attempts to generate orthogonal Krylov

basis vectors, loss of orthogonality is detrimental to its convergence

[15]. This is especially a problem with classical Gram-Schmidt or-

thogonalization and the usage of lower precisions. Therefore, the

version of GMRES-IR prescribed by the benchmark uses reorthogo-

nalization steps to better preserve orthogonality.

We show the GMRES-IR CGS2 algorithm 3 used by the bench-

mark, including details of how the least-squares problem (QR fac-

torization) is solved using Given’s rotations. The key aspect to note

here is that many of the operations are allowed to be performed in

Algorithm 2 Right-preconditioned GMRES algorithm for a non-

singular linear system 𝑨𝒙 = 𝒃

Require: Initial guess 𝒙0

𝑴 ← P(𝑨) ⊲ Preconditioner generation

𝒓0 ← 𝒃 −𝑨𝒙0, 𝛽 = | |𝒓0 | |, 𝒒1
= 𝒓0/𝛽 .

for 𝑗 = 1, 2, ...,𝑚 do do
𝒘 ← 𝑨𝑴−1𝒒 𝑗 ⊲ Preconditioner application and SpMV

for 𝑖 = 1, 2, 3, ..., 𝑗 do
ℎ𝑖, 𝑗 ← (𝒘, 𝒒𝑖)
𝒘 ← 𝒘 − ℎ𝑖, 𝑗𝒒𝑖

end for
ℎ 𝑗+1, 𝑗 ← ∥𝒘 ∥2, 𝒗 𝑗+1 ← 𝒘/ℎ 𝑗+1, 𝑗
𝑉𝑚 := [𝒗1, ..., 𝒗𝑚], 𝑯̄𝑚 ← {ℎ𝑖, 𝑗 }1≤𝑖≤ 𝑗 ;1≤ 𝑗≤𝑚

end for
𝒚𝑚 ← argmin𝑦 ∥𝛽𝒆1 − 𝑯̄𝑚𝒚∥2
𝒙𝑚 ← 𝒙0 +𝑴−1𝑸𝑚𝒚𝑚
if | |𝒃 −𝑨𝒙𝑚 | |2 < 𝜏 then

Exit.

else
Restart with 𝒙0 ← 𝒙𝑚 .

end if

low precision, but the residual update in line 7 and solution update

in line 47 are required to be done in double-precision. This makes

it possible for the solution to converge to an accuracy level equiv-

alent to that of a fully double precision solver. Note that the QR

factorization update using Given’s rotations happens on the CPU,

on each process redundantly.

Though they provide the option of using a nonsymmetric matrix

for the benchmark, Yamazaki et al. [31] prefer the same symmetric

weakly diagonal-dominant matrix as in HPCG, since this matrix

actually takes more iterations for GMRES to converge than their

nonsymmetric variant. The matrix has all diagonal entries equal to

26 and all off-diagonal entries equal to -1.

The benchmark consists of three phases:

(1) validation,

(2) mixed-precision benchmark, and

(3) double-precision ‘reference’ benchmark.

284

Scaling the memory wall using mixed-precision - HPG-MxP on an exascale machine SC ’25, November 16–21, 2025, St Louis, MO, USA

Algorithm 3 Right-preconditioned mixed-precision GMRES-IR for

the linear system𝑨𝒙 = 𝒃 . Steps in blue are allowed to be performed

in low or mixed precision.

Require: Initial guess 𝒙0, restart length𝑚, tolerance 𝜏 .

1: 𝑴 ← P𝑚𝑔 (𝑨) ⊲ Multigrid preconditioner generation

2: 𝜌0 ← ∥𝒃 ∥2
3: 𝒕 ∈ R𝑚+1, 𝒄 ∈ R𝑚+1, 𝒔 ∈ R𝑚+1
4: 𝑯 ∈ R(𝑚+1)×𝑚 ⊲ Projected system matrix

5: 𝑸 = [𝒒
1
, 𝒒

2
, ..., 𝒒𝑚] ∈ R𝑛×𝑚 ⊲ Krylov basis vectors

6: while not converged do
7: 𝒓 ← 𝒃 −𝑨𝒙 , 𝜌 = | |𝒓 | |2
8: if 𝜌/𝜌0 < 𝜏 then
9: Converged, break.

10: end if
11: 𝒓 ← 𝒓/𝜌
12: 𝒒

1
← 𝒓

13: 𝑡0,0 ← 𝜌 .

14: for 𝑘 = 1, 2, ...,𝑚 do do
15: if 𝜌/𝜌0 < 𝜏 then
16: Converged, break.

17: end if
18: 𝒛 ← 𝑴−1𝒒𝑘 ⊲ Multigrid preconditioner

19: 𝒒𝑘+1 ← 𝑨𝒛 ⊲ SpMV to get next basis vector

20: procedure CGS2 orthogonalization(𝒒𝑘+1)
21: 𝒉← 𝑸𝑇

[1:𝑘]𝒒𝑘+1 ∈ R
𝑘 ⊲ GEMVT

22: 𝒒𝑘+1 ← 𝒒𝑘+1 − 𝑸 [1:𝑘]𝒉 ⊲ GEMV

23: 𝐻
1:𝑘,𝑘 ← 𝒉

24: 𝒉← 𝑸𝑇
[1:𝑘]𝒒𝑘+1 ⊲ reorth. GEMVT

25: 𝒒𝑘+1 ← 𝒒𝑘+1 − 𝑸 [1:𝑘]𝒉 ⊲ reorth. GEMV

26: 𝐻
1:𝑘,𝑘 ← 𝐻

1:𝑘,𝑘 + 𝒉
27: end procedure
28: 𝛽 ← ∥𝒒𝑘+1∥2
29: 𝒒𝑘+1 ← 𝒒𝑘+/𝛽 ⊲ Normalize the new basis vector

30: 𝐻𝑘+1,𝑘 ← 𝛽

31: procedure Update QR with Given’s rotations

32: for 𝑗 = 1, 2, ..., 𝑘 − 1 do
33: 𝐻 𝑗+1,𝑘 ← −𝑠 𝑗𝐻 𝑗,𝑘 + 𝑐 𝑗𝐻 𝑗+1,𝑘
34: 𝐻 𝑗,𝑘 ← 𝑐 𝑗𝐻 𝑗,𝑘 + 𝑠 𝑗𝐻 𝑗+1,𝑘
35: end for
36: 𝜇 ←

√︃
𝐻2

𝑘,𝑘
+ 𝐻2

𝑘+1,𝑘
37: 𝐻𝑘,𝑘 ← 𝜇

38: 𝐻𝑘+1,𝑘 ← 0

39: 𝜌 ← |𝑡𝑘𝑠 𝑗 |.
40: 𝑡𝑘+1 ← −𝑡𝑘𝑠 𝑗
41: 𝑡𝑘 ← 𝑡𝑘𝑐 𝑗
42: 𝑠𝑘 ← 𝑠 𝑗 , 𝑐𝑘 ← 𝑐 𝑗
43: end procedure
44: end for ⊲ Restart cycle completed

45: 𝒕 ← 𝑯−1𝒕 ⊲ Dense TRSM of size𝑚

46: 𝒓 ← 𝑸𝒕
47: 𝒙𝑚 ← 𝒙0 +𝑴−1𝒓 ⊲ Mixed-precision update

48: end while

The benchmark first validates the mixed-precision solver on a

few, fixed number of processors. By default, this is all the GPUs on

one node. The validation consists of first running the double preci-

sion GMRES solver, starting from a zero initial guess, to converge

the residual norm by 9 orders of magnitude. The number of itera-

tions required, 𝑛𝑑 , is recorded. Next, mixed-precision GMRES-IR is

run to converge to the same tolerance, starting from a zero initial

guess again. The number of iterations required, 𝑛𝑖𝑟 , is recorded.

This is followed by the benchmark phase, where mixed-precision

GMRES-IR is first run for a fixed number of iterations. The time

taken by each motif is recorded and the number of floating point

operations is counted using a carefully constructed model. Floating

point operations of different precisions are counted equally, and

thus the reported GFLOP/s number is a mixed-precision number,

not the standard double-precision GFLOP/s. The final GFLOP/s

metric is penalized by the ratio of the iteration counts obtained in

the validation phase. That is, the final floating point throughput

𝐹 is given by 𝐹 = 𝐹raw

𝑛𝑑
𝑛𝑖𝑟

. Thus, to avoid a heavy penalty, mixed-

precision GMRES-IR must not take too many additional iterations

to converge 9 orders of magnitude. It is in this sense that the mixed-

precision solver is required to provide a solution that is ‘somewhat

close’ to that of the double-precision solver. When the ratio
𝑛𝑑
𝑛𝑖𝑟

is

less than 1, it is multiplied by the final GFLOPS value to penalize

the mixed precision run. However, then the ratio is greater than 1,

no penalty is applied. Thus, in the event that the mixed precision

solver actually takes fewer iterations to converge for any reason,

this is not regarded as an advantage for the mixed precision solver,

and it is regarded as though the mixed precision solver has the

same convergence rate as double precision GMRES.

The GMRES-IR solution process is repeated, starting from a zero

initial guess each time, until the requested running time is filled.

Similar to HPCG, the official running time proposed by Yamazaki

et al. [31] is 1800 seconds. Results from this phase are labelled as

‘mxp’ in the results section.

Finally, a double-precision GMRES solver is run for the same

number of fixed maximum iterations, and similar performance

metrics are collected. We report results from this phase labelled as

the ‘double’ in the results section.

3.1 The reference implementation
The reference implementation used in this work is from the official

HPG-MxP repository
1
as of April 2025. As described by Yamazaki et

al. [31], there aremany substantial inefficiencies in this version. This

is understandable since their aim was to propose the benchmark,

not provide a fully optimized implementation. However, we aim for

an optimized implementation, for which we document the issues

with the reference implementation first.

(1) The Gauss-Seidel implementation uses SpTRSV from cuS-

parse and rocsparse, which use a level-scheduled implemen-

tation [23] without reordering. This variant is mathemati-

cally equivalent to a sequential lexicographic (ordered spa-

tially by mesh points) Gauss-Seidel, but it does not expose

the most parallelism and does not fully utilize the GPU [28].

1
https://github.com/hpg-mxp/hpg-mxp

285

SC ’25, November 16–21, 2025, St Louis, MO, USA Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

Figure 2: An example of independent sets for a 2D 9-point
stencil, the 2D analog of the 3D 27-point stencil used inHPCG
and HPG-MxP

(2) Forward Gauss-Seidel is performed using a separate SpMV

with the 𝑼 matrix followed by a SpTRSV with the 𝑳 matrix,

which is wasteful.

(3) Inmultigrid, following theGauss-Seidel smoother, the smoothed

fine-grid residual is first computed using SpMV, followed

by restriction of this to the coarse grid. This performed sub-

stantial additional work which is not necessary, since the

restriction is simple injection of values from selected fine-

grid points to the coarse grid.

(4) There is no overlap of communication and computation in

either the SpMV or the Gauss-Seidel operation. Indeed, the

code does not support any asynchronous behaviour.

(5) The sparse matrix format used is compressed sparse row, or

CSR. While this format is a popular choice and reasonably

efficient in general, on GPU architectures it has been shown

that for stencil-based problems like the one here, other for-

mats can work better [8].

(6) All mixed-precision operations are done on the host, neces-

sitating additional host-device copies and utilizing slower

CPU DRAM.

3.2 Optimizations
In response to the issues identified with the reference implementa-

tion, we carry out several algorithmic changes and optimizations.

3.2.1 Multicolor Gauss-Seidel iteration. To start with, we imple-

ment the forward Gauss-Seidel in its ‘relaxation’ version [19], com-

pleting the operation in one sweep over the matrix.

More importantly, we reorder the matrix and vectors symmet-

rically using an independent set ordering in order to expose fine-

grained parallel work in the Gauss-Seidel kernel on GPUs. Each

subdomain is reordered independently, without any communica-

tion. If the 𝑛 local mesh points can be divided into 𝑛𝑐 independent

sets such that no two points within a set are directly connected to

each other in the sparsity pattern of the system matrix, a Gauss-

Seidel iteration can be completed in 𝑛𝑐 operations one after the

other, each working on 𝑛/𝑛𝑐 rows in a fully parallel manner. If

𝑛𝑐 = O(1) independent of 𝑛, we should be able to achieve good

parallel efficiency on a GPU.

The ordering itself is computed on the GPUs using the Jones-

Plassmann-Luby (JPL) algorithm [18, 22] in the optimization func-

tion of the benchmark. Naumov et al. introduced a GPU implemen-

tation [24]. We use the implementation by Trost et al. [29].

Stencil entries→

R
o
w
s
(
m
e
s
h
p
o
i
n
t
s
)→

(a) CSR

Stencil entries→

R
o
w
s
(
c
e
l
l
s
)→

(b) ELL

Figure 3: Two possible layouts of the non-zero coefficients’
array of a matrix

As shown in figure 2, the JPL algorithm as well as a sequential

greedy algorithm [25, section 3.3.3] applied to a 9-point stencil on

a spatially two-dimensional (2D) mesh give 4 independent sets, or

‘colors’. The analogous 27-point stencil in 3D requires 8 colors. This

enables the use of multicolored Gauss-Seidel, which involves fully

parallel operations on the rows within each color. The convergence

rate sometimes suffers compared to lexicographic Gauss-Seidel and

other types of reorderings such as Reverse Cuthill McKee (RCM)

[9, 19]. However, this is less of an issue within a multigrid precon-

ditioner setting.

3.2.2 ELLPACKmatrix format. We use the ELLPACKmatrix format

[8], sometimes simply referred to as ELL. This format is able to fully

utilize GPU warps, especially the 64-wide warps of AMD GPUs,

when there are only a few non-zeros per row. Fully utilizing the

warps is more difficult using the CSR format [19, section 2.9], which

is used in the reference implementation of HPG-MxP by Yamazaki

et al. [31]. Thememory layouts used by the two formats are depicted

in figure 3. While the ELL format may have some overhead in its

values and column-indices array due to padding in rows having

less than the maximum number of nonzeros, it does not require a

row pointer array.

3.2.3 Compute-communication overlap. Similar to rocHPCG [29],

we implement SpMV and Gauss-Seidel operations that update the

interior points while neighborhood halo communication operations

take place asynchronously. Pre-conditions for each operation are en-

sured using two GPU streams (‘compute’ stream and ‘halo’ stream)

and one event per MPI rank. The non-blocking kernels that com-

pute the matrix-vector product for the both the interior+boundary

and halo regions are enqueued on the ‘compute’ stream, while the

non-blocking buffer packing kernel and asynchronous host-device

copies (if used) are enqueued on the ‘halo’ stream.

The event is the object that achieves precise synchronization

between the two streams during the Gauss-Seidel operation. This

operation has a significant difference from the SpMV operation

- unlike in SpMV, Gauss-Seidel (equation (1)) requires the output

vector 𝒚 to be communicated, not the input vector. The event is

used to ensure that the interior computation kernel begins only

after boundary entries of the initial vector 𝒚 have been copied into

the send buffer, since the interior kernel updates boundary entries

in addition to fully interior locations.

286

Scaling the memory wall using mixed-precision - HPG-MxP on an exascale machine SC ’25, November 16–21, 2025, St Louis, MO, USA

3.2.4 Fused SpMV-restriction. The original implementation of Ya-

mazaki et al. [31] explicitly stores the restriction matrix 𝑹. Repre-
senting the fine grid index set as 𝐹 and the coarse grid by 𝐶 , the

coarse grid residual is computed as

𝑣𝑖 ←
∑︁
𝑗∈N𝑖

𝐴
𝑓

𝑖 𝑗
𝑥
𝑓

𝑗
, ∀ 𝑖 ∈ 𝐹 (4)

𝑟𝑐𝑖 ←
∑︁
𝑗∈N𝑖

𝑅𝑖 𝑗 (𝑏 𝑗 − 𝑣 𝑗) ∀ 𝑖 ∈ 𝐶. (5)

where 𝒃 is the right-hand side vector and 𝒙 𝑓 is the pre-smoothed

solution vector on the fine grid. Since the restriction is a simple

injection as shown in equation (3), we can fuse the residual calcula-

tion and restriction operations. Thus, in our implementation, we

compute the smoothed residual only at the coarse grid points, rather

than separately compute it at all fine grid points and then restrict

to the coarse grid. Using the coarse-to-fine grid index mapping 𝑓𝑐 ,

𝑟𝑐𝑖 ← 𝑏 𝑓𝑐 (𝑖) −
∑︁

𝑗∈N(𝑓𝑐 (𝑖))
𝐴
𝑓

𝑓𝑐 (𝑖) 𝑗𝑥
𝑓

𝑗
∀ 𝑖 ∈ 𝐶. (6)

Note that we do not store the restriction operator explicitly. We

updated the accounting of the number of floating point operations

in the multigrid preconditioner to include this optimization.

3.2.5 Software engineering. Given that the reference implementa-

tion is cross-platform and runs on both AMD and NVIDIA GPUs,

we preserved this aspect and made sure that our implementation

works with high performance on both vendors’ devices. Taking

inspiration from numerical libraries like Ginkgo [4], we introduce

a device context DeviceCtx that abstracts many vendor-specific

details, including device memory allocation and deallocation, GPU

stream and event operations, initialization and destruction of BLAS

and sparse BLAS library handles etc. We use C++ features like

function overloading and templates to generate high-performance

kernels for both CUDA and AMD devices. For example, in sparse

matrix-vector product, values loaded from the input vector are

constant and may be used more than once, and it makes sense to

cache them in L1 cache. However, the matrix nonzeros are read

only once, it make sense to skip temporal caching for these values

and improve performance slightly. The intrinsic (backend-specific,

non-standard) functions for these types of loads and stores are dif-

ferent for the two platforms and we take this into account using

C++ features.

Note that all of the improvements detailed so far apply to both

the mixed-precision and purely double-precision solvers.

Additionally, we implement simple custommixed-precision GPU

kernels for operations such as WAXPBY as required by the mixed-

precision GMRES-IR implementation. This allows us to remove the

host-device copies performed by the reference implementation to

perform these operations on the CPU.

3.3 Alternative full-scale validation
Yamazaki et al. argue [31] that validating the mixed-precision

GMRES-IR on a small number of processes (typically 1 node) and

corresponding small problem size is sufficient. The reason given is

that the benchmark’s purpose is to measure the computer’s ability

to perform operations representative of typical HPC applications

while allowing the use of different precision formats, not to provide

a truly scalable solver. However, as they themselves note, when the

multigrid preconditioner is used, the loss of convergence rate when

using mixed precision GMRES-IR can be worse at larger scales. In

order to investigate the impact of validation at a 1-node scale on the

penalty factor, we introduce a new validation mode in our version

of the benchmark code.

In the new validation mode, all the processes available to the

run and used for the benchmarking phase, are also used for the

validation phase. The global problem size used for the two phases

is also the same. Two modes are provided:

(1) standard: Double-precision GMRES is run on a small sub-

set of processes, 1 node, until a relative residual norm of

10
−9

is reached. Since the problem size is correspondingly

small, this always happenswithin the iteration limit of 10,000.

Mixed-precision GMRES-IR is then also converged 9 orders

of magnitude and the number of iterations 𝑛𝑖𝑟 is recorded.

(2) fullscale: Double precision GMRES is run for a maximum

of 𝑛𝑑 (10,000) iterations or a relative residual norm of 10
−9
,

whichever comes first. The achieved relative residual norm

𝜏 is recorded. Mixed precision GMRES-IR is then run and

converged until the same relative residual norm 𝜏 is achieved,

and the number of iterations 𝑛𝑖𝑟 is recorded.

As Yamazaki et al. [31] noted, GMRES takes more and more itera-

tions to converge to a fixed tolerance as the problem scale increases.

Thus, with our new validation path, at low scales, the GMRES solver

hits the 10
−9

tolerance much before it reaches 10,000 iterations. The

mixed precision GMRES-IR is then required to converge to 10
−9
.

However, at large scales, the global problem size is much larger and

GMRES hits 10,000 iterations first. Eg., at 1024 nodes in our runs,

the solver achieves a relative residual of about 1.15×10
−5

. This was

chosen in order to cap the amount of time the whole benchmark

takes at very large scales, while still learning something about any

loss of convergence caused by the use of mixed precision.

4 Results
We ran the optimized code on the Frontier system at Oak Ridge

National Laboratory using AMD ROCm 6.2.4, Cray MPICH 8.1.31

and GCC 14.2. Each node consists of a 64-core AMDMilan CPU and

4 AMDMI250x GPUs, each divided into twoGraphics Compute Dies

(GCDs). Each GCD is effectively treated as a separate GPU. Thus, we

consider there to be 8 GPUs per node. Each GCD is equipped with

64 GB of High Bandwidth Memory (HBM) with a vendor-claimed

peak bandwidth of 1.6 TB/s. This HBM is generally referred to as the

‘global’ memory of the GPU device, as opposed to its much smaller

but faster L2 and L1 caches. The CPU portions of the code (problem

generation etc.) utilize OpenMP parallelism as in the reference code.

Table 1 summarizes the parameters we used to run the bench-

mark. We use a restart length of 30, similar to Yamazaki et al. [31].

This is also the default restart length in the popular PETSc package

[7].

Anzt et al. [3] ran the reference version of the code on Fron-

tier from 1 to 8192 nodes, using the reference implementation of

Yamazaki et al. Due to the inefficiencies in this implementation

detailed earlier, we do not expect it to give the best performance.

However, as of writing, it is the state of the art in HPG-MxP perfor-

mance on Frontier, so we include it in our results. Please note that

287

SC ’25, November 16–21, 2025, St Louis, MO, USA Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

Parameter Value

Restart length 30

Local mesh size 320
3

Specified running time (< 1024 nodes) 1800 s

Specified running time (>= 1024 nodes) 900 s

Max. GMRES iterations per solve 300

No. GCDs used for validation 8

Relative convergence tolerance for validation 1e-9

Table 1: HPG-MxP parameters used

in the graphs that follow, the points corresponding to the results by

Anzt et al. [3], labelled “xsdk", are somewhat approximate as they

have been read off a graph (figure 4 under the chapter ‘Advances

in mixed precision algorithms’).

During validation on 1 node (8 GCDs), the reference double-

precision GMRES solver takes 2305 iterations to converge 9 orders

of magnitude, while the mixed-precision GMRES-IR requires 2382

iterations to converge to the same tolerance. This small increase in

the required number of iterations is expected, and the appropriate

penalty is applied to the mixed-precision performance metric.

4.1 Scaling, speedup and full-system
performance

We first discuss the scaling results of the benchmarking phase. Fig-

ure 4 shows how the overall performance per GCD scales as we

increase the problem size and the number of GCDs in proportion,

for both our implementation (‘present’) and the reference imple-

mentation (‘xsdk’). This is similar to weak scaling, though we do

not regard this as true weak scaling because the solver does not con-

verge to a specified residual tolerance, but rather executes a fixed

number of iterations. We see that the performance holds up well

up to large scales. However, as we approach the full system scale,

the scaling efficiency decreases due to the many inner products

required by the GMRES algorithm. Each inner product requires a

global all-reduce operation. Even though the CGS2 version batches

the inner product into a transposed GEMV operation and thus re-

duces the effective latency, we still see some degradation of the

overall scaling. Depending on the mapping of subdomains to MPI

ranks, the coarse multigrid levels may also contribute to some of

this decrease in efficiency (see the discussion on tracing below and

figure 9). Since the reference implementation achieves much lower

performance in general, it does not see this effect. The weak scaling

efficiency of our implementation from 1 node to 9408 nodes is 78%.

At the full system scale of 9408 nodes or 75,264 GPUs, we achieve

an overall mixed-precision performance of 17.23 petaflops. For

perspective, when we ran HPCG ourselves on Frontier on 9408

nodes, we achieved 10.4 petaflops. We note that these numbers are

not directly comparable since the solvers are different in the two

benchmarks.

Figure 5 shows the (penalized) speedup obtained by mixed single-

double precision GMRES-IR versus double precision GMRES. We

see a remarkable overall speedup of about 1.6×, against a theoretical
peak of 2× for going fully to single precision assuming the code is

limited by memory bandwidth. This is much improved compared

to the speedups obtained using the reference implementation. In-

terestingly, about 1.6× was also the speedup reported by Buttari et

Figure 4: ‘Weak’ scaling of the overall benchmark on Frontier.
It is based on the penalized time taken by themixed-precision
solver to complete the specified number of iterations.

al. [11] for mixed double-single precision GMRES on a single Intel

Woodcrest CPU from the year 2006.

Clearly, the perfect speedup of the orthogonalization phase plays

a role in this. Since this operation is a dense BLAS-2 operation, it

makes the best use of increased memory throughput of lower preci-

sion numbers. At very large scales, however, the orthogonalization

spends more time in MPI all-reduce operations, thus reducing the

speedup somewhat. Multigrid (primarily Gauss-Seidel, as we shall

see) and SpMV drag the speedup down somewhat owing to their

the need to fetch index arrays, leading to lower arithmetic intensity

and lower advantage from decreasing the bit-width of the floating

point numbers. We note that optimizing the motifs in multigrid

and SpMV as detailed in subsection 3.2 significantly improves the

attained speedup.

Because of our cross-platform implementation discussed in sec-

tion 3.2.5, we are able to seamlessly build and run on systems with

NVIDIA GPUs. In passing, we observed (figure 6) similar speedups

on a small commodity cluster containing NVIDIA K80 GPUs. The

absence of tensor cores on these legacy GPUs is unlikely to af-

fect the results, since the benchmark does not include any dense

matrix-matrix operations on the GPU.

4.2 Validation methodologies
We compare the validation method of Yamazaki et al. [31] to the

new validation method described in section 3.3. Recall that the

validation phase computes the ratio of iteration counts
𝑛𝑑
𝑛𝑖𝑟

to pe-

nalize the performance of mixed-precision GMRES-IR to include

the effects of any slowdown in convergence rate. The ratios com-

puted by standard validation of Yamazaki et al. and the fullscale
validation are shown in table 2. As explained in section 3, if the

ratio is less than 1, it is considered a penalty for the mixed preci-

sion GFLOPS number. It turns out that the standard small-scale

validation method is more or less as stringent as fullscale with
10,000 iterations. It is clear from the full-scale residual norms that,

up through 8 nodes, the validation double precision solve hits the

residual reduction criterion of 1e-9. However, once we get to a scale

of 64 nodes, it hits the iteration limit of 10,000 iterations first, and

does not reach 1e-9 residual reduction.

288

Scaling the memory wall using mixed-precision - HPG-MxP on an exascale machine SC ’25, November 16–21, 2025, St Louis, MO, USA

Figure 5: Speedups obtained on Frontier for different compu-
tational motifs in mixed-precision GMRES-IR over double
precision GMRES. They are based on the penalized GFLOP/s
rating of the mixed-precision solver to complete the spec-
ified number of iterations compared to that of the double-
precision solver.

Figure 6: Speedups obtained on a small cluster with NVIDIA
Tesla K80 GPUs

Nodes Std ratio Full-scale ratio Full-scale rel-

ative residual

norm

2 0.968 0.966 9.98e-10

8 0.968 1.008 9.99e-10

64 0.968 1.050 1.65e-6

128 0.968 1.023 2.82e-6

1024 0.968 1.067 1.154e-5

4096 0.968 0.958 1.148e-5

Table 2: Iteration ratios 𝑛𝑑
𝑛𝑖𝑟

for the two validation methods

Figure 7: Breakdown of time spent in the multigrid smoother
(GS), CGS2 orthogonalization (Ortho), sparse matrix vector
product (SpMV) and multigrid restriction (Restr) on Frontier

4.3 Performance analysis
We take a look at the breakdown of the time spent in the different

motifs in the benchmark at two different scales in Figure 7. The

bar chart shows the four main motifs that take nearly all the time

during the mixed-precision run and the reference double-precision

run of the benchmark. As expected, the mixed-precision variant

spends less time in orthogonalization, since this operation gets

the most benefit from switching to single precision. Going from

1 node to 9408 nodes, the full system scale, we notice that the

orthogonalization takes a greater share of time, likely because the

all-reduce operations in the inner product operations require more

time to synchronize.

Figure 8: Roofline of the benchmark on a single GCD of an
AMDMI250x. The ten most expensive kernels are depicted,
eight of which are labeled. The unlabelled kernels are the
double and single precision Fused SpMV-restriction, which
perform similar to the Gauss-Seidel sweeps.

289

SC ’25, November 16–21, 2025, St Louis, MO, USA Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

Figure 8 is a roofline of the most expensive kernels in the bench-

mark (both the optimized and reference version) on a single GCD,

obtained fromAMD’s rocprofiler-compute.We see that the GFLOP/s

obtained for the kernels lines up at the HBM bandwidth limit.

That is, despite some utilization of L2 and L1 caches, the mea-

sured throughput is at the same level as the HBM limit. Thus, the

kernels are memory bandwidth-limited, as expected.

The compute-communication overlap achieved by our imple-

mentation can be seen on the rocprof traces of a ‘middle’ rank

that communicates with the maximum number of neighbors during

an 8-node benchmark run on Frontier in figure 9. On the fine grid

(figure 9a), we can see that host-device copy after halo buffer pack-

ing, as well as the actual communications, are completely hidden by

the interior Gauss-Seidel kernel on the first independent set color.

However, on the coarsest level (figure 9b), only the first indepen-

dent set is not sufficient to completely overlap the communication.

This is because the communication surface is larger here as a ratio

of the computation volume, compared to the fine grid. Overlapping

more of the Gauss-Seidel kernel with communication is possible

and will be addressed in future work. For other operations like

SpMV, the halo communications are effectively hidden by interior

computations on all multigrid levels.

5 Conclusion
Our results show that simulation workloads should seriously con-

sider mixed-precision algorithms. The substantial 1.6× speedup can
be obtained by carefully carrying out many of the operations in

GMRES in single precision. The fact that we obtain this speedup

on well-optimized code on a wide range of scales and on more

than one architecture indicates that this is a realizable speedup for

production scientific applications, not an artefact of some ineffi-

ciency or a particular run configuration. Further, if one uses half

precision strategically for parts of operations in the blue region in

algorithm 3, one can expect an even higher speedup. This will be

addressed in future work. We do accept, however, that similar to

other large-scale numerical benchmarks, the matrix is artificial and

the actual speedup in applications will depend on the condition

numbers and pseudo-spectra of the matrices. We introduced an

option to run full-scale validation in our code and showed that the

original benchmark’s validation method sufficiently captures any

loss of convergence rate.

Critics may argue that HPG-MxP is redundant, since HPCG

already exists and both are limited bymemory bandwidth. However,

we argue that HPG-MxP opens up a much bigger design space by

introducing mixed-precision, nonsymmetric problems and GMRES

(which has different memory utilization characteristics). Being a

standardized benchmark, it allows a greater variety of scientists

and engineers to engage with the issue it seeks to address, and can

spur innovation in achieving greater performance for PDE-based

simulation workloads.

In addition, we note that the mixed-precision GMRES-IR solver

requires a lower-precision copy of the systemmatrix. This means its

overall memory utilization is more than double-precision GMRES.

In order to compensate for this, we should utilize a larger mesh size

while running double-precision GMRES and it can perhaps achieve

a somewhat higher throughput. The benchmark could be modified

to take this into account. In some applications, however, this may

not be relevant since the matrix-free variant of GMRES [12] or

nonlinear GMRES [30] may be used. Only the low-precision matrix

needs to be stored, instead of some approximate double-precision

matrix, for preconditioning.

In closing, we also point out how helpful AMD’s rocHPCG im-

plementation [29] has been in achieving this demonstration of

HPG-MxP performance. The fact that AMD open-sourced their

implementation has accelerated further progress. In the same spirit,

our code is also available open source and we provide details on

building and running it in the reproducibility appendix.

290

Scaling the memory wall using mixed-precision - HPG-MxP on an exascale machine SC ’25, November 16–21, 2025, St Louis, MO, USA

(a) Fine-grid smoothing. The boxed operation is the GS kernel on the GPU.

(b) Coarsest grid smoothing. The boxed operation is the GS kernel on the GPU.

Figure 9: Traces of our GMRES-IR implementation in an 8-node benchmark run on Frontier. In each trace, there are 4 sections
from top to bottom: ‘CPU HIP API’, ‘Markers and Ranges’, ‘GPU’ and ‘COPY’. Purple bars in the ‘GPU’ section represent the
interior Gauss-Seidel kernel. The consecutive orange, blue and gray-blue bars in the ‘Markers and Ranges’ section represent
halo buffer and communications operations. In the ‘COPY’ section, the green bar represents the device-to-host copy of the send
buffer, while the red bar after it is the host-to-device copy of the received data.

Acknowledgments
This research used resources of the Oak Ridge Leadership Com-

puting Facility at the Oak Ridge National Laboratory, which is

supported by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC05-00OR22725.

References
[1] 2024. NVIDIA Blackwell architecture technical brief. Technical Report. NVIDIA.

version 1.1.

[2] A. Abdelfattah, H. Anzt, A. Ayala, E. Boman, E. Carson, S. Cayrols, T. Cojean, J.

Dongarra, R. Falgout, M. Gates, T. Gruetzmacher, N. Higham, S. Kruger, X. Li,

N. Lindquist, Y. Liu, J. Loe, P. Luszczek, P. Nayak, D. Osei-Kuffuor, S. Pranesh,

S. Rajamanickam, T. Ribizel, B. Smith, K. Swirydowicz, S. Thomas, S. Tomov, Y.

Tsai, I. Yamazaki, and U. M. Yang. 2021. Advances in Mixed Precision Algorithms:
2021 Edition. Technical Report LLNL-TR-825909. Lawrence Livermore National

Lab. (LLNL), Livermore, CA (United States). doi:10.2172/1814677

[3] Hartwig Anzt. 2024. 2.3.3.01- xSDK-Multiprecision Final Report for Subcontract
Partner KIT. Technical Report. Lawrence Livermore National Laboratory (LLNL),

Livermore, CA (United States). doi:10.2172/2318788

[4] Hartwig Anzt, Terry Cojean, Goran Flegar, Fritz Göbel, Thomas Grützmacher,

Pratik Nayak, Tobias Ribizel, Yuhsiang Tsai, and Enrique S. Quintana-Ortí. 2022.

291

https://doi.org/10.2172/1814677
https://doi.org/10.2172/2318788

SC ’25, November 16–21, 2025, St Louis, MO, USA Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

Ginkgo: A Modern Linear Operator Algebra Framework for High Performance

Computing. ACM Trans. Math. Software 48, 1 (March 2022), 1–33. doi:10.1145/

3480935

[5] Hartwig Anzt, Björn Rocker, and Vincent Heuveline. 2010. Energy efficiency of

mixed precision iterative refinement methods using hybrid hardware platforms.

Computer Science - Research and Development 25, 3 (2010). doi:10.1007/s00450-
010-0124-2

[6] Allison H. Baker, Robert D. Falgout, Todd Gamblin, Tzanio V. Kolev, Martin

Schulz, and Ulrike Meier Yang. 2012. Scaling Algebraic Multigrid Solvers: On the

Road to Exascale. In Competence in High Performance Computing 2010, Christian
Bischof, Heinz-Gerd Hegering, Wolfgang E. Nagel, and Gabriel Wittum (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 215–226. doi:10.1007/978-3-642-

24025-6_18

[7] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown,

Peter Brune, Kris Buschelman, Emil Constantinescu, Lisandro Dalcin, Alp Dener,

Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Václav Hapla, Tobin

Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, MatthewG. Knepley, Fande

Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran Mills,

Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan, Jason

Sarich, Barry F. Smith, Hansol Suh, Stefano Zampini, Hong Zhang, Hong Zhang,

and Junchao Zhang. 2025. PETSc/TAO Users Manual. Technical Report ANL-21/39
- Revision 3.23. Argonne National Laboratory. doi:10.2172/2476320

[8] Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-vector

multiplication on throughput-oriented processors. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. 1–11. doi:10.
1145/1654059.1654078

[9] Michele Benzi, Wayne Joubert, and Gabriel Mateescu. 1999. Numerical experi-

ments with parallel orderings for ILU preconditioners. Electron. Trans. Numer.
Anal. 8 (1999), 88–114. https://etna.math.kent.edu/volumes/1993-2000/vol8/

abstract.php?vol=8%20&pages=88-114

[10] Achi Brandt. 1977. Multi-level adaptive solutions to boundary value problems.

Math. Comp. 31, 138 (1977), 333–390. https://www.jstor.org/stable/2006422

[11] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimir

Tomov. 2008. Using mixed precision for sparse matrix computations to enhance

the performance while achieving 64-bit accuracy. ACM Trans. Math. Software 34,
4 (2008). doi:10.1145/1377596.1377597

[12] Todd T. Chisholm and David W. Zingg. 2009. A Jacobian-free Newton–Krylov

algorithm for compressible turbulent fluid flows. J. Comput. Phys. 228, 9 (2009),
3490–3507. doi:10.1016/j.jcp.2009.02.004

[13] Ewa Deelman, Jack Dongarra, Bruce Hendrickson, Amanda Randles, Daniel Reed,

Edward Seidel, and Katherine Yelick. 2025. High-performance computing at a

crossroads. Science 387, 6736 (2025), 829–831. doi:10.1126/science.adu0801
[14] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. 2016. High-performance

conjugate-gradient benchmark: A new metric for ranking high-performance

computing systems. The International Journal of High Performance Computing
Applications 30, 1 (Feb. 2016), 3–10. doi:10.1177/1094342015593158

[15] L. Giraud, J. Langou, and M. Rozloznik. 2005. The loss of orthogonality in

the Gram-Schmidt orthogonalization process. Computers & Mathematics with
Applications 50, 7 (2005), 1069–1075. doi:10.1016/j.camwa.2005.08.009 Numerical

Methods and Computational Mechanics.

[16] William D Gropp, Dinesh K Kaushik, David E Keyes, and Barry F Smith. 2001.

High-performance parallel implicit CFD. Parallel Comput. 27, 4 (2001), 337–362.
doi:10.1016/S0167-8191(00)00075-2 Parallel computing in aerospace.

[17] Azzam Haidar, Ahmad Abdelfattah, Mawussi Zounon, Panruo Wu, Srikara

Pranesh, Stanimire Tomov, and Jack Dongarra. 2018. The Design of Fast and

Energy-Efficient Linear Solvers: On the Potential of Half-Precision Arithmetic

and Iterative Refinement Techniques. In Computational Science – ICCS 2018, Yong
Shi, Haohuan Fu, Yingjie Tian, Valeria V. Krzhizhanovskaya, Michael Harold Lees,

Jack Dongarra, and Peter M. A. Sloot (Eds.). Springer International Publishing,

586–600. doi:10.1007/978-3-319-93698-7_45

[18] Mark T. Jones and Paul E. Plassmann. 1993. A Parallel Graph Coloring Heuristic.

SIAM Journal on Scientific Computing 14, 3 (1993), 654–669. doi:10.1137/0914041

arXiv:https://doi.org/10.1137/0914041

[19] Aditya Kashi. 2020. Asynchronous fine-grain parallel iterative solvers for compu-
tational fluid dynamics. phdthesis. https://escholarship.mcgill.ca/downloads/

2f75rd57s

[20] Aditya Kashi, Hao Lu, Wesley Brewer, David Rogers, Michael Matheson, Mallikar-

jun Shankar, and Feiyi Wang. 2025. Mixed-precision numerics in scientific appli-

cations: survey and perspectives. arXiv:2412.19322 [cs.CE]

[21] Jennifer A. Loe, Christian A. Glusa, Ichitaro Yamazaki, Erik G. Boman, and

Sivasankaran Rajamanickam. 2021. Experimental Evaluation of Multiprecision

Strategies for GMRES on GPUs. In 2021 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 469–478. doi:10.1109/IPDPSW52791.

2021.00078

[22] Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent

Set Problem. SIAM J. Comput. 15, 4 (1986), 1036–1053. doi:10.1137/0215074
[23] Maxim Naumov. 2011. Parallel Solution of Sparse Triangular Linear Systems in the

Preconditioned Iterative Methods on the GPU. Technical Report NVR-2011-001.

NVIDIA.

[24] Maxim Naumov, Patrice Castonguay, and J. Cohen. 2015. Parallel graph coloring
with applications to the incomplete LU factorization on the GPU. Technical Report
NVR-2015-001. NVIDIA.

[25] Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems (second ed.). Society
for Industrial and Applied Mathematics. doi:10.1137/1.9780898718003

[26] Youcef Saad and Martin H. Schulz. 1986. GMRES - A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput.
7, 3 (1986).

[27] B.F. Smith, P.E. Bjørstad, and W.D. Gropp. 1996. Domain decomposition - parallel
multilevel methods for elliptic partial differential equations. Cambridge University

Press.

[28] Brad Suchoski, Caleb Severn, Manu Shantharam, and Padma Raghavan. 2012.

Adapting Sparse Triangular Solution to GPUs. In 2012 41st International Confer-
ence on Parallel Processing Workshops. 140–148. doi:10.1109/ICPPW.2012.23

[29] Nico Trost. 2023. rocHPCG. https://github.com/ROCm/rocHPCG Advanced

Micro Devices, inc..

[30] T. Washio and C.W. Oosterlee. 1997. Krylov subspace acceleration for nonlinear

mulrigrid schemes. Electronic Transactions on Numerical Analysis 6 (Dec. 1997),
271–290.

[31] Ichitaro Yamazaki, Christian Glusa, Jennifer Loe, Piotr Luszczek, Sivasankaran

Rajamanickam, and Jack Dongarra. 2022. High-Performance GMRES Multi-

Precision Benchmark: Design, Performance, and Challenges. In 2022 IEEE/ACM
International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS). 112–122. doi:10.1109/PMBS56514.

2022.00015

292

https://doi.org/10.1145/3480935
https://doi.org/10.1145/3480935
https://doi.org/10.1007/s00450-010-0124-2
https://doi.org/10.1007/s00450-010-0124-2
https://doi.org/10.1007/978-3-642-24025-6_18
https://doi.org/10.1007/978-3-642-24025-6_18
https://doi.org/10.2172/2476320
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1145/1654059.1654078
https://etna.math.kent.edu/volumes/1993-2000/vol8/abstract.php?vol=8%20&pages=88-114
https://etna.math.kent.edu/volumes/1993-2000/vol8/abstract.php?vol=8%20&pages=88-114
https://www.jstor.org/stable/2006422
https://doi.org/10.1145/1377596.1377597
https://doi.org/10.1016/j.jcp.2009.02.004
https://doi.org/10.1126/science.adu0801
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1016/j.camwa.2005.08.009
https://doi.org/10.1016/S0167-8191(00)00075-2
https://doi.org/10.1007/978-3-319-93698-7_45
https://doi.org/10.1137/0914041
https://arxiv.org/abs/https://doi.org/10.1137/0914041
https://escholarship.mcgill.ca/downloads/2f75rd57s
https://escholarship.mcgill.ca/downloads/2f75rd57s
https://arxiv.org/abs/2412.19322
https://doi.org/10.1109/IPDPSW52791.2021.00078
https://doi.org/10.1109/IPDPSW52791.2021.00078
https://doi.org/10.1137/0215074
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1109/ICPPW.2012.23
https://github.com/ROCm/rocHPCG
https://doi.org/10.1109/PMBS56514.2022.00015
https://doi.org/10.1109/PMBS56514.2022.00015

Scaling the memory wall using mixed-precision - HPG-MxP on an exascale machine SC ’25, November 16–21, 2025, St Louis, MO, USA

Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

This document describes the artifacts used to obtain the results of

the article “Scaling the memory wall using mixed-precision - HPG-

MxP on an exascale machine". The article describes a new state-

of-the-art implementation of High Performance GMRES Mixed

Precision (HPG-MxP) benchmark that achieves much higher perfor-

mance than the reference implementation, performance analysis,

speedup from the use of mixed precision, and performance on the

full Frontier supercomputer, the first exascale machine.

Please note that there have been some bugfixes and minor im-

provements made to the source code since submitting the original

manuscript, and these change the performance numbers slightly.

At some scales, the performance numbers obtained by reproduction

attempts may be slightly better than documented in the manu-

script. However, the magnitudes of the changes are small and do

not meaningfully affect the conclusions.

A Overview of Contributions and Artifacts
A.1 Paper’s Main Contributions
We provide a list of the main contributions of the paper below.

C1 We describe a state-of-the-art implementation of the HPG-

MxP benchmark that achieves much higher performance

than the reference implementation on large-scale GPU-based

HPC systems.

C2 We show that with such an optimized implementation,

a higher speedup than earlier reported is possible from a

double-single mixed-precision solver on current-generation

exascale systems.

C3 We report, for the first time, a full-system HPG-MxP run

(9408 nodes) on the world’s first exascale system, Frontier,

at the Oak Ridge National Laboratory, USA, using our opti-

mized codebase.

C4 We report some performance analysis of the benchmark

code, particularly traces showing the achieved compute-

communication overlap, the achieved memory bandwidth

and performance relative to the roofline.

C5 We confirm that the standard validation that uses a small

fixed problem size (on a single node) is sufficient to accu-

rately penalize our mixed precision solver. This is achieved

by introducing a full-scale validation that uses all available

nodes and the full problem size.

A.2 Computational Artifacts
The artifact we provide is as follows.

A1 Apermanent record of ourHPG-MxP implementation along

with plotting scripts is provided at https://doi.org/10.5281/

zenodo.16943828, while code development is currently lo-

cated at https://github.com/at-aaims/HPG-MxP.

Artifact ID Contributions Related

Supported Paper Elements

𝐴1 𝐶1 Figure 4

𝐶2 Figure 5

Figure 6

𝐶3 Figure 4

Sec. 4.1, line 751

Figure 7

𝐶4 Figure 7

Figure 8

Figure 9

𝐶5 Table 2

B Artifact Identification
We provide below details of how the artefact relates to the con-

tributions, the expected reproduction time, setup of the computer

system, execution of the code and analysis of the results. The in-

structions that follow enable the reader to set up the environment,

build the code and run it on a high performance computing (HPC)

system. Further, the steps to postprocess the data generated by the

runs are outlined.

B.1 Computational Artifact 𝐴1

Relation To Contributions
The artefact is the software repository developed for demonstrat-

ing optimized performance on the Frontier exascale system. It is

the primary vehicle by which we obtain our findings and directly

leads to all the results obtained, including absolute performance

in GFLOP/s at different scales, speedups of the mixed-precision

GMRES-IR over double-precision GMRES at different scales, time

break-downs showing the proportion of time spent by the most

important kernels, and traces showing the overlap of computation

and communication.

Expected Results
The code should run and generate a

HPGMP-Benchmark_0.1_<date>_<time>.txt file. This file contains
the relevant performance data. On Frontier, the performance should

be roughly 2000 GFLOP/s per node at large scales, dropping to 1838

GFLOP/s per node at full system scale.

Expected Reproduction Time (in Minutes)
The time required for an individual valid run, when the runtime

specified is 1800s, is about 42 minutes on Frontier, at least up to

256 nodes or so. Half-time runs with runtime 900s, for node counts

starting at 1024 nodes in our results, take about 32 minutes to

complete. The difference is due to the problem set up tasks that are

common to all variants of the code involved and are not officially

timed.

293

https://doi.org/10.5281/zenodo.16943828
https://doi.org/10.5281/zenodo.16943828
https://github.com/at-aaims/HPG-MxP

SC ’25, November 16–21, 2025, St Louis, MO, USA Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

Frontier Andes (GPU)

Max nodes 9408 9

GPU AMD MI250x NVIDIA K80

GPUs per node 8 2

GPU memory

bandwidth

1600 GB/s 480 GB/s

GPU memory

capacity

64 GB 24 GB

Network HPE Cray Slingshot

11 200 Gb/s

Mellanox S8500 Series

HDR Infiniband 200

Gb/s

CPU AMD 7763, 64 cores 2x Intel Xeon E5-2695,

28 cores

Table 3: Hardware characteristics of target systems (note that
on Frontier, ‘GPU’ means a single Graphics Compute Die
(GCD))

Frontier Andes

C++ compiler GCC 14.2.0 GCC 9.3.0

GPU toolchain ROCm 6.2.4 CUDA 11.2.2

MPI Cray MPICH 8.1.31, lib-

fabric 1.22.0

OpenMPI 4.0.4

Table 4: Software used for building and running the code

Artifact Setup (incl. Inputs)
Hardware. The results reported in the article were mostly obtained

on the Frontier exascale system, though those corresponding to fig-

ure 6 were obtained on Andes. The characteristics of these systems

are documented in table 3.

Software. In general, building HPG-MxP requires

• a modern C++ compiler that supports the C++ 17 standard,

• a GPU toolkit, either CUDA or ROCm (CUDA 11.2, ROCm

6.2 and ROCm 6.4 have been tested so far),

• an MPI library, and

• CMake.

Table 4 shows the toolchains and libraries used for building the

code on the respective systems. Note that ROCm and CUDA in-

clude drivers, compilers (hipcc or nvcc) and the ecosystem libraries

rocPRIM, rocRAND rocBLAS, and rocSPARSE, or CUB, cuRAND,

cuBLAS and cuSPARSE.

Datasets / Inputs. The matrix and vectors needed are generated

within the code; there is no external data dependency. Apart from

that, the code requires a few command line flags, denoting the local

grid sizes and the requested runtime of the benchmarking phase:

Eg., –nx=320 –ny=320 –nz=320 –rt=1800 on Frontier.

Installation and Deployment. Installation consists of loading the

required modules described above, running CMake to configure

the build, and then building using the underlying build tool such

as GNU Make. It is generally build out-of-tree and into a separate

installation directory.

Profiling and tracing require some additional build flags to enable

NVTX or rocTX annotations. The benchmark is also truncated to

the most relevant parts for analysis.

Artifact Execution
After cloning or downloading the source code and building, exe-

cution primarily involves running the xhpgmp executable with the

appropriate MPI and GPU-binding flags, with arguments to specify

the local problem size, runtime and optionally the validation mode.

To fully reproduce all results in the paper, the code needs to be run

at different node counts. On Frontier, we ran the code at 1, 2 8, 64,

128, 512, 1024, 4096 and 9408 nodes. On Andes, we ran the code on

1, 2 and 8 nodes.

Artifact Analysis (incl. Outputs)
Running the xhpgmp executable will produce

HPGMP-Benchmark_0.1_<date>_<time>.txt files. These contain
all the performance data needed to generate Figures 4-7 in the

paper (supporting contributions 𝐶1-𝐶3) after post-processing. We

provide the Python plotting scripts in the repository, in the tools
directory. For each of the scripts, calling the script as python3
script_name.py –help outputs the purpose of the script and the

arguments expected. We provide more detailed instructions on

using these scripts in the artifact evaluation.

We used the ROCm Compute Profiler
2
tool for roofline analysis

(Figure 8 in the paper, supporting contribution 𝐶4). At the time of

writing, a rocprofiler-compute module is available on Frontier.

However, one can build the tool directly from source, which is the

approach we initially took.

We used rocprof to generate traces and visualized these traces

(json file) with Perfetto UI
3
. Figure 9 in the paper, supporting

contribution 𝐶4 is a snapshot of this trace vizualization.

The iteration counts and attained residual levels during vali-

dation can be read off from either the Slurm output file or the

HPGMP-Benchmark output file. Table 2 (contribution 𝐶5) in the

paper is generated by collecting this data at different node counts

using the full-scale validation.

Artifact Evaluation (AE)

C.1 Computational Artifact 𝐴1

Artifact Setup (incl. Inputs)
The following script can build HPG-MxP on Frontier, assuming one

is currently in the root directory of the cloned repository.

1 module load PrgEnv -gnu /8.6.0 \

2 libfabric /1.22.0 cray -mpich /8.1.31

3 module load rocm /6.2.4

4 module load googletest /1.14.0

5 module rm cray -libsci darshan -runtime

6 export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH\

7 :$LD_LIBRARY_PATH

8

9 mkdir build && cd build

10 CC=gcc CXX=g++ cmake -DHPGMP_ENABLE_HIP=ON \

2
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-

rocprof-compute.html

3
https://ui.perfetto.dev/

294

https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://ui.perfetto.dev/

Scaling the memory wall using mixed-precision - HPG-MxP on an exascale machine SC ’25, November 16–21, 2025, St Louis, MO, USA

11 -DROCM_PATH=$ROCM_PATH \

12 -DCMAKE_HIP_ARCHITECTURES=gfx90a \

13 -DCMAKE_BUILD_TYPE=Release \

14 -DCMAKE_INSTALL_PREFIX =/path/to/install/hpgmp ..

15 make -j8

16 make install

Listing 1: Building on Frontier

1 module load gcc /9.3.0 cuda /11.2.2 openmpi /4.0.4

2 mkdir build && cd build

3 CC=gcc CXX=g++ cmake -DHPGMP_ENABLE_CUDA=ON \

4 -DCMAKE_CUDA_ARCHITECTURES =37 \

5 -DCMAKE_BUILD_TYPE=Release

6 -DCMAKE_INSTALL_PREFIX =/path/to/install/hpgmp ..

7 make -j8

8 make install

Listing 2: Building on Andes

ROCm is detectedmainly via the environment variable ROCM_PATH.
Note that when using Cray compiler wrappers, it’s best to point

CC and CXX in CMake to the underlying compilers such as g++ or
clang++. CMake sometimes fails to find MPI otherwise.

To profile the application, we set the following additional flag at

compilation time.

1 -DHPGMP_ENABLE_PROFILING=On

Listing 3: Extra compiling flag for profiling

This flag enables NVTx/ROCTx annotations and limits the number

of GMRES calls to one (with restart_length=30 multigrid cycles)

for both the optimized and the reference implementations. This is

sufficient for profiling purposes, while limiting the cost of profiling,

given that there is a warm up run before the benchmark.

Artifact Execution
The listings below detail the steps and flags required to run the

benchmark and obtain the results.

1 #SBATCH -t 0:45:00

2 #SBATCH -N 1024

3 #SBATCH --ntasks -per -node=8

4 #SBATCH --exclusive

5 #SBATCH --cpus -per -task=7

6 #SBATCH --gpus -per -task=1

7 #SBATCH -A acc123

8 #SBATCH -J m320_3 -n1024

9 #SBATCH -o %x-%j.slout

10

11 module load PrgEnv -gnu /8.6.0 libfabric /1.22.0 \

12 cray -mpich /8.1.31

13 module load rocm /6.2.4

14 module load googletest /1.14.0

15 module rm cray -libsci darshan -runtime

16 export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH\

17 :$LD_LIBRARY_PATH

18

19 HPCG_NX =320

20 HPCG_NY =320

21 HPCG_NZ =320

22 RUNTIME =1800

23 EXEC=/path/to/install/hpgmp/bin/xhpgmp

24 cd $SLURM_SUBMIT_DIR

25 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

26 srun -n $SLURM_NTASKS -c $SLURM_CPUS_PER_TASK \

27 --gpus -per -task=1 --gpu -bind=closest \

28 --exclusive \

29 $EXEC --nx=$HPCG_NX --ny=$HPCG_NY --nz=$HPCG_NZ \

30 --rt=$RUNTIME

Listing 4: Job submission script on Frontier

1 #SBATCH -t 0:55:00

2 #SBATCH -N 8

3 #SBATCH --ntasks -per -node=2

4 #SBATCH --exclusive

5 #SBATCH --cpus -per -task =14

6 #SBATCH --gpus -per -task=1

7 #SBATCH -p gpu

8 #SBATCH --mem=0

9 #SBATCH -A acc123

10 #SBATCH -J m256_160_128 -n8

11 #SBATCH -o %x-%j.slout

12

13 HPCG_NX =256

14 HPCG_NY =160

15 HPCG_NZ =128

16 RUNTIME =1800

17 EXEC=/path/to/install/hpgmp/bin/xhpgmp

18

19 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

20 srun -n $SLURM_NTASKS -c $SLURM_CPUS_PER_TASK \

21 --gpus -per -task=1 --gpu -bind=closest \

22 -m block:cyclic --cpu -bind=sockets --exclusive \

23 $EXEC --nx=$HPCG_NX --ny=$HPCG_NY --nz=$HPCG_NZ \

24 --rt=$RUNTIME

Listing 5: Job submission script on Andes

The following commands can be used to generate PDF files of

the roofline.

1 module load rocprofiler -compute /3.0.0

2 rocprof -compute profile --roof -only \

3 --kernel -names --name xhpgmp \

4 -- $EXEC --nx=$HPCG_NX --ny=$HPCG_NY --nz=$HPCG_NZ \

5 --rt=$RUNTIME

Listing 6: ROCm Compute Profiler command for roofline
analysis on Frontier

To collect the rocprof traces from multiple processes at once,

we replace the original application executable with a helper script

that includes a call to rocprof as follows.

1 srun -n $SLURM_NTASKS -c $SLURM_CPUS_PER_TASK \

2 --gpus -per -task=1 --gpu -bind=closest \

3 --exclusive ./ helper_rocprof.sh

Listing 7: Scheduler command to collect traces on Frontier

1 rocprof --stats \

2 --roctx -trace --sys -trace \

3 -d ${SLURM_PROCID} \

4 -o ${SLURM_PROCID }/ results.csv \

5 $EXEC --nx=$HPCG_NX --ny=$HPCG_NY --nz=$HPCG_NZ \

6 --rt=$RUNTIME

Listing 8: rocprof command to collect traces on Frontier (con-
tent of helper_rocprof.sh)

This will generate traces for each process and write the data in the

corresponding $SLURM_PROCID folder.
The default validation mode is the standard validation (single

node) mode of Yamazaki et al. In order to obtain the results using

full-scale validation to reproduce 𝐶5 (table 2 in the revised manu-

script), a slightly modified version of the job run script needs to be

used; particularly, the flag –validation_type=fullscale.

295

SC ’25, November 16–21, 2025, St Louis, MO, USA Aditya Kashi, Nicholson Koukpaizan, Hao Lu, Michael Matheson, Sarp Oral, and Feiyi Wang

1 #SBATCH -t 0:45:00

2 #SBATCH -N 1024

3 #SBATCH --ntasks -per -node=8

4 #SBATCH --exclusive

5 #SBATCH --cpus -per -task=7

6 #SBATCH --gpus -per -task=1

7 #SBATCH -A acc123

8 #SBATCH -J fullscale_valid -m320_3 -n1024

9 #SBATCH -o %x-%j.slout

10

11 module load PrgEnv -gnu /8.6.0 libfabric /1.22.0 \

12 cray -mpich /8.1.31

13 module load rocm /6.4.1

14 module load googletest /1.14.0

15 module rm cray -libsci darshan -runtime

16 export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH\

17 :$LD_LIBRARY_PATH

18

19 HPCG_NX =320

20 HPCG_NY =320

21 HPCG_NZ =320

22 RUNTIME =450

23 EXEC=/path/to/install/hpgmp/bin/xhpgmp

24 cd $SLURM_SUBMIT_DIR

25 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

26 srun -n $SLURM_NTASKS -c $SLURM_CPUS_PER_TASK \

27 --gpus -per -task=1 --gpu -bind=closest \

28 --exclusive \

29 $EXEC --nx=$HPCG_NX --ny=$HPCG_NY --nz=$HPCG_NZ \

30 --rt=$RUNTIME --validation_type=fullscale

Listing 9: Job submission script on Frontier for full scale
validation

On a given system, it is currently a trial-and-error process to

figure out the maximum possible local problem size. On Frontier, we

use a local mesh size of 320
3
, while on Andes we use 256×160×128.

For the multigrid method to work, each dimension must be divisible

by 8.

Artifact Analysis (incl. Outputs)
Running the xhpgmp executable will produce

HPGMP-Benchmark_0.1_<date>_<time>.txt files. We provide the

following Python plotting scripts in the repository, in the tools
directory.

• parse_benchmark_output.pyWith the HPGMP output file

as the argument, this script parses the file and appends a

row to a CSV file containing the time taken by different

operations (SpMV, MG, etc.) and the GFLOP/s obtained by

them.

• plot_scaling.py With the above generated CSV file as

input, this script generates the weak scaling plot like the

ones in Figure 4.

• plot_speedups.py With the CSV file as input again, this

script generates speedup plots as in Figures 5 and 6 of the

manuscript.

• plot_stacked_breakdown.py When called on the CSV file

generated by the parser script, it generates the stacked bar

charts. In response to reviewer comments, the pie charts in

Figure 7 were replaced by a single stacked bar chart with

different node counts along the x-axis.

The profiling results on Frontier (Figures 8 and 9 in the paper),

supporting contribution 𝐶4 can be obtained as follows:

• Running ROCm Compute Profiler will generate PDF files for

the roofline. We built ROCm Compute Profiler from source

and modified it to annotate the plot and make it more read-

able. We show the resulting roofline plot in Figure 8.

• Running rocprof with tracing will generate JSON files that

can be visualized with Perfetto UI. We show a resulting trace

in Figure 9. This is the trace from process 41 of 64 (8 Frontier

nodes), which is at the center of the computational domain,

and therefore, has the maximum number of neighbors.

We make an additional node about the

HPGMP-Benchmark_0.1_<date>_<time>.txt files.

• The final reported mixed precision performance number is

the field GFLOP/s Summary::Total for benchmark.
• The reported double precision performance number is the

field GFLOP/s Summary:: - Total (reference).
• For our implementation, the file also gives estimates of achieved

memory bandwidth.

• Validation information is found in the ‘Iterations Summary’

section of the file, and also in the standard output (typically

redirected to a Slurm output file).

296

Scaling the memory wall using mixed-precision - HPG-MxP on an exascale machine SC ’25, November 16–21, 2025, St Louis, MO, USA

Reproducibility Report

D Overview of Reproduction of Artifacts
The following table provides an overview of each computational

artifact’s reproducibility status. Artifact IDs correspond to those in

the AD/AE Appendices.

Artifact ID Available Functional Reproduced

𝐴1 • • partially

Badge awarded yes yes no

E Reproduction of Computational Artifacts
E.1 Timeline
The artifact evaluation was conducted from Sept 05, 2025, to Sept

07, 2025."

E.2 Computational Environment and Resources
The experiments conducted for artifact evaluation were performed

on

• NERSC Perlmutter

• A local server with amd=gfx90a and ROCm 6.2.0

E.3 Details on Artifact Reproduction
• The zip file was successfully downloaded from github.

• On both testbeds, the compilation failed initially

• This was fixed by changing constexpr to const in lines 34,

41, 57 of HPG-MxP-1.0.0/src/perf_counter.hpp

• On Perlmutter, the execution was successful with provided

python scripts used to generate PNGs of scaling and speedups.

• The script plot_stacked_breakdown.py is not available in

the artifacts while being mentioned in the AD/AE. This is

due to the review process during which the pie charts were

changed to stacked histograms but the changes did not reflect

anywhere else.

• Although the exact plots were not reproduced, similar plots

corresponding to Figuress 4-7 on Perlmutter were obtained.

• On the local gfx90a server, segmentation fault was encoun-

tered thus Figures 8-9 were not reproduced. Diligent effort

was made by the reviewer to identify the source of segmen-

tation fault, but that was unfortunately not possible in time.

Disclaimer: This Reproducibility Report was crafted by volunteers with the goal

of enhancing reproducibility in our research domain. The time period allocated for the

reproducibility analysis was constrained by paper notification deadlines and camera-

ready submission dates. Furthermore, the compute hours in the shared infrastructure

(e.g., Chameleon Cloud) available to the authors of this report were limited and re-

stricted the scope and quantity of experiments in the review phase. Consequently, the

inability to reproduce certain artifacts within this evaluation should not be interpreted

as definitive evidence of their irreproducibility. Limitations in the time allocated to

this review and the compute resources available to the reviewers may have prevented

a positive outcome. Furthermore, reviewers assess the reproducibility of the artifacts

provided by the authors; however, they are not accountable for verifying that the

artifacts support the main claims of the paper.

297

	Abstract
	1 Introduction
	2 Background
	3 The HPG-MxP benchmark
	3.1 The reference implementation
	3.2 Optimizations
	3.3 Alternative full-scale validation

	4 Results
	4.1 Scaling, speedup and full-system performance
	4.2 Validation methodologies
	4.3 Performance analysis

	5 Conclusion
	Acknowledgments
	References
	A Overview of Contributions and Artifacts
	A.1 Paper's Main Contributions
	A.2 Computational Artifacts

	B Artifact Identification
	B.1 Computational Artifact A1
	C.1 Computational Artifact A1

	D Overview of Reproduction of Artifacts
	E Reproduction of Computational Artifacts
	E.1 Timeline
	E.2 Computational Environment and Resources
	E.3 Details on Artifact Reproduction

