Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Enhanced mode-II fracture toughness of an epoxy resin due to shear banding

Journal Article · · Acta Materialia
;  [1];  [2]
  1. Los Alamos National Lab., NM (United States). Materials Science and Technology Div.
  2. Univ. of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering

The Brazilian disk specimen is used to measure the fracture toughness of an epoxy resin material under mode-I and mode-II loading conditions. It is found that even though the apparent fracture behavior seems to be brittle for both loading modes, the mode-II fracture toughness is more than three times higher than the mode-I fracture toughness. Such a substantial increase in fracture toughness is more than three times higher than the mode-I fracture toughness. Such a substantial increase in fracture toughness under mode-II loading contradicts the prediction of the maximum hoop stress criterion, which has been validated for most brittle fractures. Results of unidirectional tension and compression tests of the epoxy resin indicate that under the mode-II loading, shear banding can develop ahead of the crack tip before the brittle fracture occurs. The substantial increase of the mode-II fracture toughness can be accounted for by including the contributions of the shear banding. A mechanical model was developed to study the effects of the shear band on the mode-II fracture toughness. This model suggests that the extension direction of a mode-II crack is still controlled by the orientation of the maximum hoop stress; however, the critical energy-release rate should include contributions from both the maximum hoop stress and the shear band. The effect of different stress distribution profiles inside the shear band is studied with the model as well.

Sponsoring Organization:
USDOE, Washington, DC (United States); National Science Foundation, Washington, DC (United States)
OSTI ID:
289516
Journal Information:
Acta Materialia, Journal Name: Acta Materialia Journal Issue: 16 Vol. 46; ISSN 1359-6454; ISSN ACMAFD
Country of Publication:
United States
Language:
English

Similar Records

Effect of resin toughness on the delamination fracture behavior of graphite/epoxy composites
Thesis/Dissertation · Mon Dec 31 23:00:00 EST 1984 · OSTI ID:5284272

Mixed-mode fracture behavior of silica particulate filled epoxide resin
Conference · Thu Jul 01 00:00:00 EDT 1999 · OSTI ID:20000278

Effect of temperature on the adhesive fracture behavior of an elastomer-epoxy resin
Journal Article · Wed Dec 31 23:00:00 EST 1975 · J. Adhes.; (United States) · OSTI ID:7365452