Heat pipes for enhanced cooldown of cyrogenic systems
Conference
·
OSTI ID:279453
In many important cryogenic applications the use of liquid cryogens for system cooling are either not feasible or are unsuitable. In such cases a cryogenic refrigeration system or multi stage cryocooler must be employed to provide the necessary cooling. To shorten cooldown time for such a system, especially if the thermal mass is large, a thermal shunt directly connecting the first stage of the cryocooler to the load during cooldown is desirable. This thermal shunt allows effective utilization of the greater cooling power available from the first stage of the cryocooler early in the cooldown. Upon reaching operating temperature, the thermal shunt must exhibit a high resistance to thermally isolate the first stage of the cryocooler from the load. Heat pipes are well suited to achieve these objectives. The Advanced Lightweight Influence Sweep System (ALISS), under development by the U.S. Navy for shallow water magnetic mine countermeasures, employs a large, conductively cooled, superconducting magnet that must be cooled from 300 to 4.2 K. Cryogenic heat pipes acting as cryocooler thermal shunts are used to shorten the cooldown time. Ethane, nitrogen and oxygen were evaluated as possible working fluids. A thermal model of the ALISS was developed to evaluate the cooldown performance of various heat pipe combinations. In conjunction with heat pipe performance tests, this model was used to select a suitable design for the heat pipe thermal shunts.
- Research Organization:
- Los Alamos National Lab., NM (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 279453
- Report Number(s):
- LA-UR--96-2228; CONF-9606249--1; ON: DE96012824
- Country of Publication:
- United States
- Language:
- English
Similar Records
Nitrogen heat pipe for cryocooler thermal shunt
Nitrogen heat pipe for cryocooler thermal shunt
Modeling the cooldown of cryocooler conduction-cooled devices
Conference
·
Fri Sep 01 00:00:00 EDT 1995
·
OSTI ID:106480
Nitrogen heat pipe for cryocooler thermal shunt
Conference
·
Mon Dec 30 23:00:00 EST 1996
·
OSTI ID:416633
Modeling the cooldown of cryocooler conduction-cooled devices
Technical Report
·
Thu Nov 03 00:00:00 EDT 2022
·
OSTI ID:1896649