Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Robustness against S.E.U. of an artificial neural network space application

Journal Article · · IEEE Transactions on Nuclear Science
DOI:https://doi.org/10.1109/23.510742· OSTI ID:277740
; ;  [1];  [2];  [3]
  1. IMAG, Grenoble (France). Lab. de Genie Informatique
  2. CNRS, Orleans (France). Lab. de Physique et Chimie d l`Environnement
  3. Centre National d`Etudes Spatiales, Toulouse (France)

The authors study the sensitivity of Artificial Neural Networks (ANN) to Single Event Upsets (SEU). A neural network designed to detect electronic and protonic whistlers has been implemented using a dedicated VLSI circuit: the LNeuro neural processor. Results of both SEU software simulations and heavy ion tests point out the fault tolerance properties of ANN hardware implementations.

OSTI ID:
277740
Report Number(s):
CONF-9509107--
Journal Information:
IEEE Transactions on Nuclear Science, Journal Name: IEEE Transactions on Nuclear Science Journal Issue: 3Pt1 Vol. 43; ISSN 0018-9499; ISSN IETNAE
Country of Publication:
United States
Language:
English

Similar Records

S.E.U. experiments on an artificial neural network implemented by means of digital processors
Journal Article · Sat Nov 30 23:00:00 EST 1996 · IEEE Transactions on Nuclear Science · OSTI ID:445455

Design and characterization of analog VLSI neural network modules
Journal Article · Sun Feb 28 23:00:00 EST 1993 · IEEE Journal of Solid-State Circuits (Institute of Electrical and Electronics Engineers); (United States) · OSTI ID:6362728

SEU fault tolerance in artificial neural networks
Journal Article · Thu Nov 30 23:00:00 EST 1995 · IEEE Transactions on Nuclear Science · OSTI ID:203708