Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

SEU fault tolerance in artificial neural networks

Journal Article · · IEEE Transactions on Nuclear Science
DOI:https://doi.org/10.1109/23.489227· OSTI ID:203708
; ;  [1];  [2];  [3]
  1. Lab. de Genie Informatique, Grenoble (France)
  2. Centre National d`Etudes Spatiales, Toulouse (France)
  3. Univ. Politecnica de Catalunya, Barcelona (Spain)

In this paper the authors investigate the robustness of Artificial Neural Networks when encountering transient modification of information bits related to the network operation. These kinds of faults are likely to occur as a consequence of interaction with radiation. Results of tests performed to evaluate the fault tolerance properties of two different digital neural circuits are presented.

OSTI ID:
203708
Report Number(s):
CONF-950716--
Journal Information:
IEEE Transactions on Nuclear Science, Journal Name: IEEE Transactions on Nuclear Science Journal Issue: 6Pt1 Vol. 42; ISSN 0018-9499; ISSN IETNAE
Country of Publication:
United States
Language:
English

Similar Records

Fault-tolerance characteristics of neural networks
Thesis/Dissertation · Sat Dec 31 23:00:00 EST 1988 · OSTI ID:5923848

Robustness against S.E.U. of an artificial neural network space application
Journal Article · Sat Jun 01 00:00:00 EDT 1996 · IEEE Transactions on Nuclear Science · OSTI ID:277740

Incipient fault diagnosis of chemical processes via artificial neural networks
Journal Article · Tue Oct 31 23:00:00 EST 1989 · A.I.Ch.E. Journal (American Institute of Chemical Engineers); (USA) · OSTI ID:6988082