Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications
- Xsirius Inc., Camarillo, CA (United States)
- UCLA School of Medicine, CA (United States)
Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., larger scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.
- OSTI ID:
- 277652
- Report Number(s):
- CONF-951073--
- Journal Information:
- IEEE Transactions on Nuclear Science, Journal Name: IEEE Transactions on Nuclear Science Journal Issue: 3Pt2 Vol. 43; ISSN 0018-9499; ISSN IETNAE
- Country of Publication:
- United States
- Language:
- English
Similar Records
Development of an ultra-compact CsI/HgI{sub 2} gamma-ray scintillation spectrometer
New concepts for scintillator/HgI[sub 2] gamma ray spectroscopy