skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy injection in gamma-ray burst afterglows

Journal Article · · Astrophysical Journal
; ; ;  [1];  [2];  [3];  [4]
  1. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
  2. Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd, Pasadena CA 91125 (United States)
  3. Racah Institute of Physics, Edmund J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
  4. University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States)

We present multi-wavelength observations and modeling of gamma-ray bursts (GRBs) that exhibit a simultaneous re-brightening in their X-ray and optical light curves, and are also detected at radio wavelengths. We show that the re-brightening episodes can be modeled by injection of energy into the blastwave and that in all cases the energy injection rate falls within the theoretical bounds expected for a distribution of energy with ejecta Lorentz factor. Our measured values of the circumburst density, jet opening angle, and beaming-corrected kinetic energy are consistent with the distribution of these parameters for long-duration GRBs at both z∼1 and z≳6, suggesting that the jet launching mechanism and environment of these events are similar to that of GRBs that do not have bumps in their light curves. However, events exhibiting re-brightening episodes have lower radiative efficiencies than average, suggesting that a majority of the kinetic energy of the outflow is carried by slow-moving ejecta, which is further supported by steep measured distributions of the ejecta energy as a function of Lorentz factor. We do not find evidence for reverse shocks over the energy injection period, implying that the onset of energy injection is a gentle process. We further show that GRBs exhibiting simultaneous X-ray and optical re-brightenings are likely the tail of a distribution of events with varying rates of energy injection, forming the most extreme events in their class. Future X-ray observations of GRB afterglows with Swift and its successors will thus likely discover several more such events, while radio follow-up and multi-wavelength modeling of similar events will unveil the role of energy injection in GRB afterglows.

OSTI ID:
22882424
Journal Information:
Astrophysical Journal, Vol. 814, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); Since 2009, the country of publication for this journal is the UK.; ISSN 0004-637X
Country of Publication:
United Kingdom
Language:
English

Similar Records

THE AFTERGLOW AND ENVIRONMENT OF THE SHORT GRB 111117A
Journal Article · Sat Sep 01 00:00:00 EDT 2012 · Astrophysical Journal · OSTI ID:22882424

AFTERGLOW OBSERVATIONS OF FERMI LARGE AREA TELESCOPE GAMMA-RAY BURSTS AND THE EMERGING CLASS OF HYPER-ENERGETIC EVENTS
Journal Article · Sun May 01 00:00:00 EDT 2011 · Astrophysical Journal · OSTI ID:22882424

THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A
Journal Article · Sun Mar 10 00:00:00 EST 2013 · Astrophysical Journal · OSTI ID:22882424