skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optical properties of metamorphic hybrid heterostuctures for vertical-cavity surface-emitting lasers operating in the 1300-nm spectral range

Journal Article · · Semiconductors
; ;  [1]; ; ;  [2]; ; ; ;  [3]
  1. St. Petersburg Academic University (Russian Federation)
  2. ITMO University (Russian Federation)
  3. Ioffe Institute (Russian Federation)

The possibility of fabricating hybrid metamorphic heterostructures for vertical-cavity surfaceemitting lasers working in the 1300-nm spectral range is demonstrated. The metamorphic semiconductor part of the heterostructure with a GaAs/AlGaAs distributed Bragg reflector and an active region based on InAlGaAs/InGaAs quantum wells is grown by molecular-beam epitaxy on a GaAs (100) substrate. The top dielectric mirror with a SiO{sub 2}/Ta{sub 2}O{sub 5} distributed Bragg reflector is formed by magnetron sputtering. The spectra of the room-temperature microphotoluminescence of these vertical-cavity surface-emitting laser heterostructures are studied under 532-nm excitation in the power range of 0–70 mW (with a focused-beam diameter of ~1 μm). The superlinear dependence of the photoluminescence intensity on the excitation power, narrowing of the photoluminescence peaks, and a change in the modal composition may be indications of lasing. The results obtained give evidence that the technology of the metamorphic growth of heterostructures on GaAs substrates can be used for the fabrication of vertical-cavity surface-emitting lasers working in the 1300- nm spectral range.

OSTI ID:
22756388
Journal Information:
Semiconductors, Vol. 51, Issue 9; Other Information: Copyright (c) 2017 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7826
Country of Publication:
United States
Language:
English