skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of ultrastructural and nanomechanical signature of platelets from acute myocardial infarction and platelet activation

Journal Article · · Biochemical and Biophysical Research Communications
 [1];  [2];  [3];  [1];  [1];  [4]
  1. Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632 (China)
  2. Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630 (China)
  3. Analytical and Testing Center, Jinan University, Guangzhou 510632 (China)
  4. Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001 (China)

Acute myocardial infarction (AMI) initiation and progression follow complex molecular and structural changes in the nanoarchitecture of platelets. However, it remains poorly understood how the transformation from health to AMI alters the ultrastructural and biomechanical properties of platelets within the platelet activation microenvironment. Here, we show using an atomic force microscope (AFM) that platelet samples, including living human platelets from the healthy and AMI patient, activated platelets from collagen-stimulated model, show distinct ultrastructural imaging and stiffness profiles. Correlative morphology obtained on AMI platelets and collagen-activated platelets display distinct pseudopodia structure and nanoclusters on membrane. In contrast to normal platelets, AMI platelets have a stiffer distribution resulting from complicated pathogenesis, with a prominent high-stiffness peak representative of platelet activation using AFM-based force spectroscopy. Similar findings are seen in specific stages of platelet activation in collagen-stimulated model. Further evidence obtained from different force measurement region with activated platelets shows that platelet migration is correlated to the more elasticity of pseudopodia while high stiffness at the center region. Overall, ultrastructural and nanomechanical profiling by AFM provides quantitative indicators in the clinical diagnostics of AMI with mechanobiological significance.

OSTI ID:
22696982
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 486, Issue 2; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English

Similar Records

Burro aortic collagen: platelet aggregating activity and ultrastructural changes induced by plasma
Journal Article · Wed Mar 01 00:00:00 EST 1978 · Am. J. Vet. Res.; (United States) · OSTI ID:22696982

Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties
Journal Article · Fri Dec 04 00:00:00 EST 2015 · Biochemical and Biophysical Research Communications · OSTI ID:22696982

Mechanical Properties of Mineralized Collagen Fibrils As Influenced By Demineralization
Journal Article · Mon May 11 00:00:00 EDT 2009 · J. Struct. Biol. 162:404,2008 · OSTI ID:22696982