skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts

Abstract

The future gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along null geodesics in our four-dimensional space-time. However, if there exist extra dimensions and only GWs can propagate freely in the bulk, the causal propagations of GWs and electromagnetic waves (EMWs) are in general different. In this paper, we study null geodesics of GWs and EMWs in a five-dimensional anti-de Sitter space-time in the presence of the curvature of the universe. We show that for general cases the horizon radius of GW is longer than EMW within equal time. Taking the GW150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory and the X-ray event detected by the Fermi Gamma-ray Burst Monitor as an example, we study how the curvature k and the constant curvature radius l affect the horizon radii of GW and EMW in the de Sitter and Einstein-de Sitter models of the universe. This provides an alternative method for probing extra dimension through future GW observations of compact binaries and their electromagnetic counterparts.

Authors:
; ; ;  [1];  [2];  [3]
  1. Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China)
  2. Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918-4, Beijing 100049 (China)
  3. School of Physics, Nankai University, Tianjin 300071 (China)
Publication Date:
OSTI Identifier:
22680016
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2017; Journal Issue: 02; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ANTI DE SITTER SPACE; BINARY STARS; COSMIC GAMMA BURSTS; COSMOLOGICAL MODELS; DE SITTER SPACE; FOUR-DIMENSIONAL CALCULATIONS; GAMMA RADIATION; GRAVITATIONAL WAVES; GRAVITONS; INTERFEROMETERS; LASER RADIATION; SPACE-TIME; UNIVERSE; X RADIATION

Citation Formats

Yu, Hao, Gu, Bao-Min, Wang, Yong-Qiang, Liu, Yu-Xiao, Huang, Fa Peng, and Meng, Xin-He, E-mail: yuh13@lzu.edu.cn, E-mail: gubm15@lzu.edu.cn, E-mail: huangfp@ihep.ac.cn, E-mail: yqwang@lzu.edu.cn, E-mail: xhm@nankai.edu.cn, E-mail: liuyx@lzu.edu.cn. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/02/039.
Yu, Hao, Gu, Bao-Min, Wang, Yong-Qiang, Liu, Yu-Xiao, Huang, Fa Peng, & Meng, Xin-He, E-mail: yuh13@lzu.edu.cn, E-mail: gubm15@lzu.edu.cn, E-mail: huangfp@ihep.ac.cn, E-mail: yqwang@lzu.edu.cn, E-mail: xhm@nankai.edu.cn, E-mail: liuyx@lzu.edu.cn. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts. United States. doi:10.1088/1475-7516/2017/02/039.
Yu, Hao, Gu, Bao-Min, Wang, Yong-Qiang, Liu, Yu-Xiao, Huang, Fa Peng, and Meng, Xin-He, E-mail: yuh13@lzu.edu.cn, E-mail: gubm15@lzu.edu.cn, E-mail: huangfp@ihep.ac.cn, E-mail: yqwang@lzu.edu.cn, E-mail: xhm@nankai.edu.cn, E-mail: liuyx@lzu.edu.cn. Wed . "Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts". United States. doi:10.1088/1475-7516/2017/02/039.
@article{osti_22680016,
title = {Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts},
author = {Yu, Hao and Gu, Bao-Min and Wang, Yong-Qiang and Liu, Yu-Xiao and Huang, Fa Peng and Meng, Xin-He, E-mail: yuh13@lzu.edu.cn, E-mail: gubm15@lzu.edu.cn, E-mail: huangfp@ihep.ac.cn, E-mail: yqwang@lzu.edu.cn, E-mail: xhm@nankai.edu.cn, E-mail: liuyx@lzu.edu.cn},
abstractNote = {The future gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along null geodesics in our four-dimensional space-time. However, if there exist extra dimensions and only GWs can propagate freely in the bulk, the causal propagations of GWs and electromagnetic waves (EMWs) are in general different. In this paper, we study null geodesics of GWs and EMWs in a five-dimensional anti-de Sitter space-time in the presence of the curvature of the universe. We show that for general cases the horizon radius of GW is longer than EMW within equal time. Taking the GW150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory and the X-ray event detected by the Fermi Gamma-ray Burst Monitor as an example, we study how the curvature k and the constant curvature radius l affect the horizon radii of GW and EMW in the de Sitter and Einstein-de Sitter models of the universe. This provides an alternative method for probing extra dimension through future GW observations of compact binaries and their electromagnetic counterparts.},
doi = {10.1088/1475-7516/2017/02/039},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 02,
volume = 2017,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}
  • Merging compact binaries are the most viable and best-studied candidates for gravitational-wave (GW) detection by the fully operational network of ground-based observatories. In anticipation of the first detections, the expected distribution of GW sources in the local universe is of considerable interest. Here we investigate the full phase-space distribution of coalescing compact binaries at z = 0 using dark matter simulations of structure formation. The fact that these binary systems acquire large barycentric velocities at birth ('kicks') results in merger site distributions that are more diffusely distributed with respect to their putative hosts, with mergers occurring out to distances ofmore » a few Mpc from the host halo. Redshift estimates based solely on the nearest galaxy in projection can, as a result, be inaccurate. On the other hand, large offsets from the host galaxy could aid the detection of faint optical counterparts and should be considered when designing strategies for follow-up observations. The degree of isotropy in the projected sky distributions of GW sources is found to be augmented with increasing kick velocity and to be severely enhanced if progenitor systems possess large kicks as inferred from the known population of pulsars and double compact binaries. Even in the absence of observed electromagnetic counterparts, the differences in sky distributions of binaries produced by disparate kick-velocity models could be discerned by GW observatories, within the expected accuracies and detection rates of advanced LIGO-in particular with the addition of more interferometers.« less
  • Coalescing neutron-star-black-hole (NS-BH) binaries are a promising source of gravitational-wave (GW) signals detectable with large-scale laser interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory and Virgo. They are also one of the main short gamma-ray burst (SGRB) progenitor candidates. If the black hole (BH) tidally disrupts its companion, an SGRB may be ignited when a sufficiently massive accretion disk forms around the remnant BH. Detecting an NS-BH coalescence both in the GW and electromagnetic (EM) spectrum offers a wealth of information about the nature of the source. How much can actually be inferred from a joint detection is unclear,more » however, as a mass/spin degeneracy may reduce the GW measurement accuracy. To shed light on this problem and on the potential of joint EM+GW observations, we here combine recent semi-analytical predictions for the remnant disk mass with estimates of the parameter-space portion that is selected by a GW detection. We identify cases in which an SGRB ignition is supported, others in which it can be excluded, and finally others in which the outcome depends on the chosen model for the currently unknown NS equation of state. We pinpoint a range of systems that would allow us to place lower bounds on the equation of state stiffness if both the GW emission and its EM counterpart are observed. The methods we develop can broaden the scope of existing GW detection and parameter-estimation algorithms and could allow us to disregard about half of the templates in an NS-BH search following an SGRB trigger, increasing its speed and sensitivity.« less
  • The space-based gravitational wave (GW) detector, evolved Laser Interferometer Space Antenna (eLISA) is expected to observe millions of compact Galactic binaries that populate our Milky Way. GW measurements obtained from the eLISA detector are in many cases complimentary to possible electromagnetic (EM) data. In our previous papers, we have shown that the EM data can significantly enhance our knowledge of the astrophysically relevant GW parameters of Galactic binaries, such as the amplitude and inclination. This is possible due to the presence of some strong correlations between GW parameters that are measurable by both EM and GW observations, for example, themore » inclination and sky position. In this paper, we quantify the constraints in the physical parameters of the white-dwarf binaries, i.e., the individual masses, chirp mass, and the distance to the source that can be obtained by combining the full set of EM measurements such as the inclination, radial velocities, distances, and/or individual masses with the GW measurements. We find the following 2σ fractional uncertainties in the parameters of interest. The EM observations of distance constrain the chirp mass to ∼15%-25%, whereas EM data of a single-lined spectroscopic binary constrain the secondary mass and the distance with factors of two to ∼40%. The single-line spectroscopic data complemented with distance constrains the secondary mass to ∼25%-30%. Finally, EM data on double-lined spectroscopic binary constrain the distance to ∼30%. All of these constraints depend on the inclination and the signal strength of the binary systems. We also find that the EM information on distance and/or the radial velocity are the most useful in improving the estimate of the secondary mass, inclination, and/or distance.« less
  • In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited inmore » the detection of electromagnetic counterparts of gravitational waves.« less
  • Combined gravitational wave (GW) and electromagnetic (EM) observations of compact binary mergers should enable detailed studies of astrophysical processes in the strong-field gravity regime. This decade, ground-based GW interferometers promise to routinely detect compact binary mergers. Unfortunately, networks of GW interferometers have poor angular resolution on the sky and their EM signatures are predicted to be faint. Therefore, a challenging goal will be to unambiguously pinpoint the EM counterparts of GW mergers. We perform the first comprehensive end-to-end simulation that focuses on: (1) GW sky localization, distance measures, and volume errors with two compact binary populations and four different GWmore » networks; (2) subsequent EM detectability by a slew of multiwavelength telescopes; and (3) final identification of the merger counterpart amidst a sea of possible astrophysical false positives. First, we find that double neutron star binary mergers can be detected out to a maximum distance of 400 Mpc (or 750 Mpc) by three (or five) detector GW networks, respectively. Neutron-star-black-hole binary mergers can be detected a factor of 1.5 further out; their median to maximum sky localizations are 50-170 deg{sup 2} (or 6-65 deg{sup 2}) for a three (or five) detector GW network. Second, by optimizing depth, cadence, and sky area, we quantify relative fractions of optical counterparts that are detectable by a suite of different aperture-size telescopes across the globe. Third, we present five case studies to illustrate the diversity of scenarios in secure identification of the EM counterpart. We discuss the case of a typical binary, neither beamed nor nearby, and the challenges associated with identifying an EM counterpart at both low and high Galactic latitudes. For the first time, we demonstrate how construction of low-latency GW volumes in conjunction with local universe galaxy catalogs can help solve the problem of false positives. We conclude with strategies that would best prepare us for successfully identifying the elusive EM counterpart of a GW merger.« less