Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Wavelet Denoising of Radio Observations of Rotating Radio Transients (RRATs): Improved Timing Parameters for Eight RRATs

Journal Article · · Astrophysical Journal
; ;  [1]; ;  [2]
  1. Lane Department of Computer Science and Electrical Engineering West Virginia University Morgantown, WV 26506 (United States)
  2. Department of Physics and Astronomy West Virginia University Morgantown, WV 26506 (United States)

Rotating radio transients (RRATs) are sporadically emitting pulsars detectable only through searches for single pulses. While over 100 RRATs have been detected, only a small fraction (roughly 20%) have phase-connected timing solutions, which are critical for determining how they relate to other neutron star populations. Detecting more pulses in order to achieve solutions is key to understanding their physical nature. Astronomical signals collected by radio telescopes contain noise from many sources, making the detection of weak pulses difficult. Applying a denoising method to raw time series prior to performing a single-pulse search typically leads to a more accurate estimation of their times of arrival (TOAs). Taking into account some features of RRAT pulses and noise, we present a denoising method based on wavelet data analysis, an image-processing technique. Assuming that the spin period of an RRAT is known, we estimate the frequency spectrum components contributing to the composition of RRAT pulses. This allows us to suppress the noise, which contributes to other frequencies. We apply the wavelet denoising method including selective wavelet reconstruction and wavelet shrinkage to the de-dispersed time series of eight RRATs with existing timing solutions. The signal-to-noise ratio (S/N) of most pulses are improved after wavelet denoising. Compared to the conventional approach, we measure 12%–69% more TOAs for the eight RRATs. The new timing solutions for the eight RRATs show 16%–90% smaller estimation error of most parameters. Thus, we conclude that wavelet analysis is an effective tool for denoising RRATs signal.

OSTI ID:
22679816
Journal Information:
Astrophysical Journal, Journal Name: Astrophysical Journal Journal Issue: 1 Vol. 847; ISSN ASJOAB; ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

Timing Solution and Single-pulse Properties for Eight Rotating Radio Transients
Journal Article · Mon May 01 00:00:00 EDT 2017 · Astrophysical Journal · OSTI ID:22663123

Denoising Seismic Waveforms Using a Wavelet-Transform-Based Machine-Learning Method
Journal Article · Mon Apr 08 00:00:00 EDT 2024 · Bulletin of the Seismological Society of America · OSTI ID:2349196

PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN
Journal Article · Tue Nov 01 00:00:00 EDT 2016 · Astronomical Journal (Online) · OSTI ID:22662946